The code implement GAN and WGAN and tested them on the MNIST dataset. We also computed the FID and SSIM scores on the generated images.
GAN_params
- GAN parameters (dis-params-n
is the paramters for the discriminator after n epochs and gen-params-n
is the paramters for the generator after n epochs).
plots
- Saved plots of loss and discrimiantor output.
saved_loss
- Saved losses as NumPy arrays.
WGAN_params
- GAN parameters (dis-params-n
is the paramters for the discriminator after n epochs and gen-params-n
is the paramters for the generator after n epochs).
evaluating_GAN_generator.ipynb
- Evaluate GAN using FID and SSIM scores.
evaluating_WGAN_generator.ipynb
- Evaluate WGAN using FID and SSIM scores.
GAN.py
- Python script to train GAN.
nn_helper.py
- Helper file that store the classes for the generator and discriminator and loss functions.
plotting.ipynb
- Python notebook for plotting the losses, discriminator outputs, and generated images.
WGAN.py
- Python script to train WGAN.