Skip to content

An algorithm for low-dimensional ONMF and multi-component NN-PCA

Notifications You must be signed in to change notification settings

durenzn/spanonmf

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

spanonmf

An algorithm for low-dimensional Orthogonal Nonnegative Matrix Factorization and multi-component Nonnegative Principal Component Analysis.

The package implements the algorithms of our NIPS 2015 paper Orthogonal NMF through Subspace Exploration.

Requirements

No real requirement, but you may also want to download the textprogressbar and install it in Matlab's path.

Example Usage

%% Nonnegative PCA

% Generate a random data matrix:
m = 10000;
n = 1000;
M = randn(m, n);

% Specify number of components:
k = 5;

W = spannnpcamulti(M, k, ...
                   'verbose', true, ...
                   'approximationrank', 5, ...
                   'numsamples', 1e4);


%% Orthogonal Nonnegative Matrix Factorization

% Generate a random nonnegative data matrix:
m = 100;
n = 1000;
M = rand(m, n);

% Specify target dimension for the approximate factorization:
k = 5;

[W, H, err] = spanonmf(M, k, ...
                       'verbose', true, ...
                       'approximationrank', 5, ...
                       'numsamples', 1e4);

About

An algorithm for low-dimensional ONMF and multi-component NN-PCA

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 100.0%