Skip to content

The Arcee client for executing domain-adpated language model routines

Notifications You must be signed in to change notification settings

EricLiclair/arcee

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

86 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DALM by Arcee

The Arcee client for executing domain-adpated language model routines

Arcee DALMs

Installation

pip install arcee-py

Authenticating

Your Arcee API key is obtained at app.arcee.ai

In bash:

export ARCEE_API_KEY=********

In notebook:

import os
os.environ["ARCEE_API_KEY"] = "********"

Upload Context

Upload context for your domain adapted langauge model to draw from.

import arcee
arcee.upload_doc("pubmed", doc_name="doc1", doc_text="whoa")
# or
# arcee.upload_docs("pubmed", docs=[{"doc_name": "doc1", "doc_text": "foo"}, {"doc_name": "doc2", "doc_text": "bar"}]

Train DALM

Train a DALM with the context you have uploaded.

import arcee
dalm = arcee.train_dalm("medical_dalm", context="pubmed")
# Wait for training to complete
arcee.get_dalm_status("medical_dalm")

The DALM training procedure trains your model in context and stands up an index for your model to draw from.

DALM Generation

import arcee
med_dalm = arcee.get_dalm("medical_dalm")
med_dalm.generate("What are the components of Scoplamine?")

DALM Retrieval

Retrieve documents for a given query and to view them or plug into a different LLM.

import arcee
med_dalm = arcee.get_dalm("medical_dalm")
med_dalm.retrieve("my query")

Using the Arcee CLI

You can easily train and use your Domain-Adapted Language Model (DALM) with Arcee using the CLI. Follow these steps post installation to train and utilize your DALM:

Upload Context

Upload a context file for your DALM like,

arcee upload context pubmed --file doc1

Upload all files in a directory like,

arcee upload context pubmed --directory docs

Upload any combination of files and directories with,

arcee upload context pubmed --directory some_docs --file doc1 --directory more_docs --file doc2

Note: The upload command ensures only valid and unique files are uploaded.

Train your DALM:

Train your DALM with any uploaded context like,

arcee train medical_dalm --context pubmed
# wait for training to complete...

DALM Generation:

Generate text completions from a model like,

arcee generate medical_dalm --query "Can AI-driven music therapy contribute to the rehabilitation of patients with disorders of consciousness?"

DALM Retrieval:

Retrieve documents for a given query and to view them or plug into a different LLM like,

arcee retrieve medical_dalm --query "Can AI-driven music therapy contribute to the rehabilitation of patients with disorders of consciousness?"

Contributing

We use invoke to manage this repo. You don't need to use it, but it simplifies the workflow.

Set up the repo

git clone https://github.com/arcee-ai/arcee-python && cd arcee-python
# optionally setup your virtual environment (recommended)
python -m venv .venv && source .venv/bin/activate
# install repo
pip install invoke
inv install

Format, lint, test

inv format  # run black and ruff
inv lint    # black check, ruff check, mypy
inv test    # pytest

Publishing

We publish in this repo by creating a new release/tag in github. On release, a github action will publish the __version__ of arcee-py that is in arcee/__init__.py

So you need to increase that version before releasing, otherwise it will fail

To create a new release

  1. Open a PR increasing the __version__ of arcee-py. You can manually edit it or run inv uv
  2. Create a new release, with the name being the __version__ of arcee-py

Manual release [not recommended]

We do not recommend this. If you need to, please make the version number an alpha or beta release.
If you need to create a manual release, you can run inv build && inv publish

About

The Arcee client for executing domain-adpated language model routines

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%