-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
472f1b1
commit fd148db
Showing
2 changed files
with
338 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
[ | ||
{ | ||
"title": "A Smoothed Bregman Proximal Gradient Algorithm for Decentralized Nonconvex Optimization", | ||
"base_url": null, | ||
"title_page": null, | ||
"ieee_id": "10448285", | ||
"github": null, | ||
"web_page": null, | ||
"github_page": null, | ||
"colab": null, | ||
"modelscope": null, | ||
"gitee": null, | ||
"gitlab": null, | ||
"zenodo": null, | ||
"kaggle": null, | ||
"demo_page": null, | ||
"paper_thecvf": null, | ||
"paper_arxiv_id": null, | ||
"paper_pdf": null, | ||
"paper_hal_science": null, | ||
"paper_researchgate": null, | ||
"paper_amazon": null, | ||
"youtube_id": null, | ||
"drive_google": null, | ||
"dropbox": null, | ||
"onedrive": null, | ||
"loom": null, | ||
"section": "Distributed and Federated Learning" | ||
}, | ||
{ | ||
"title": "Asynchronous Diffusion Learning with Agent Subsampling and Local Updates", | ||
"base_url": null, | ||
"title_page": null, | ||
"ieee_id": "10447684", | ||
"github": null, | ||
"web_page": null, | ||
"github_page": null, | ||
"colab": null, | ||
"modelscope": null, | ||
"gitee": null, | ||
"gitlab": null, | ||
"zenodo": null, | ||
"kaggle": null, | ||
"demo_page": null, | ||
"paper_thecvf": null, | ||
"paper_arxiv_id": "2402.05529", | ||
"paper_pdf": null, | ||
"paper_hal_science": null, | ||
"paper_researchgate": null, | ||
"paper_amazon": null, | ||
"youtube_id": null, | ||
"drive_google": null, | ||
"dropbox": null, | ||
"onedrive": null, | ||
"loom": null, | ||
"section": "Distributed and Federated Learning" | ||
}, | ||
{ | ||
"title": "Composite Federated Learning with Heterogeneous Data", | ||
"base_url": null, | ||
"title_page": null, | ||
"ieee_id": "10447718", | ||
"github": null, | ||
"web_page": null, | ||
"github_page": null, | ||
"colab": null, | ||
"modelscope": null, | ||
"gitee": null, | ||
"gitlab": null, | ||
"zenodo": null, | ||
"kaggle": null, | ||
"demo_page": null, | ||
"paper_thecvf": null, | ||
"paper_arxiv_id": "2309.01795", | ||
"paper_pdf": null, | ||
"paper_hal_science": null, | ||
"paper_researchgate": null, | ||
"paper_amazon": null, | ||
"youtube_id": null, | ||
"drive_google": null, | ||
"dropbox": null, | ||
"onedrive": null, | ||
"loom": null, | ||
"section": "Distributed and Federated Learning" | ||
}, | ||
{ | ||
"title": "Mitigating Data Injection Attacks on Federated Learning", | ||
"base_url": null, | ||
"title_page": null, | ||
"ieee_id": "10446615", | ||
"github": null, | ||
"web_page": null, | ||
"github_page": null, | ||
"colab": null, | ||
"modelscope": null, | ||
"gitee": null, | ||
"gitlab": null, | ||
"zenodo": null, | ||
"kaggle": null, | ||
"demo_page": null, | ||
"paper_thecvf": null, | ||
"paper_arxiv_id": "2312.02102", | ||
"paper_pdf": null, | ||
"paper_hal_science": null, | ||
"paper_researchgate": null, | ||
"paper_amazon": null, | ||
"youtube_id": null, | ||
"drive_google": null, | ||
"dropbox": null, | ||
"onedrive": null, | ||
"loom": null, | ||
"section": "Distributed and Federated Learning" | ||
}, | ||
{ | ||
"title": "Multi-Model Wireless Federated Learning with Downlink Beamforming", | ||
"base_url": null, | ||
"title_page": null, | ||
"ieee_id": "10445815", | ||
"github": null, | ||
"web_page": null, | ||
"github_page": null, | ||
"colab": null, | ||
"modelscope": null, | ||
"gitee": null, | ||
"gitlab": null, | ||
"zenodo": null, | ||
"kaggle": null, | ||
"demo_page": null, | ||
"paper_thecvf": null, | ||
"paper_arxiv_id": "2312.13424", | ||
"paper_pdf": null, | ||
"paper_hal_science": null, | ||
"paper_researchgate": null, | ||
"paper_amazon": null, | ||
"youtube_id": null, | ||
"drive_google": null, | ||
"dropbox": null, | ||
"onedrive": null, | ||
"loom": null, | ||
"section": "Distributed and Federated Learning" | ||
}, | ||
{ | ||
"title": "Client-Free Federated Unlearning via Training Reconstruction with Anchor Subspace Calibration", | ||
"base_url": null, | ||
"title_page": null, | ||
"ieee_id": "10447085", | ||
"github": null, | ||
"web_page": null, | ||
"github_page": null, | ||
"colab": null, | ||
"modelscope": null, | ||
"gitee": null, | ||
"gitlab": null, | ||
"zenodo": null, | ||
"kaggle": null, | ||
"demo_page": null, | ||
"paper_thecvf": null, | ||
"paper_arxiv_id": null, | ||
"paper_pdf": null, | ||
"paper_hal_science": null, | ||
"paper_researchgate": null, | ||
"paper_amazon": null, | ||
"youtube_id": null, | ||
"drive_google": null, | ||
"dropbox": null, | ||
"onedrive": null, | ||
"loom": null, | ||
"section": "Distributed and Federated Learning" | ||
} | ||
] |