-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
2 changed files
with
344 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,334 @@ | ||
#= | ||
julia --project=.buildkite | ||
using Revise; include(joinpath("benchmarks", "scripts", "benchmark_field_last.jl")) | ||
# Info | ||
# Benchmark results: | ||
Clima A100: | ||
``` | ||
Kernel `add3(x1, x2, x3) = x1+x2+x3` and `n_reads_writes=4`: | ||
[ Info: ArrayType = CuArray | ||
Problem size: (63, 4, 4, 5400, 1), float_type = Float32, device_bandwidth_GBs=2039 | ||
┌─────────────────────────────────────────────────────────────────────┬──────────────────────────────────┬─────────┬─────────────┬────────────────┬────────┐ | ||
│ funcs │ time per call │ bw % │ achieved bw │ n-reads/writes │ n-reps │ | ||
├─────────────────────────────────────────────────────────────────────┼──────────────────────────────────┼─────────┼─────────────┼────────────────┼────────┤ | ||
│ FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; bm, nreps = 100) │ 72 microseconds, 899 nanoseconds │ 54.568 │ 1112.64 │ 4 │ 100 │ | ||
│ FLD.aos_lin_offset!(X_aos, Y_aos, us; bm, nreps = 100) │ 56 microseconds, 259 nanoseconds │ 70.708 │ 1441.74 │ 4 │ 100 │ | ||
│ FLD.soa_linear_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 56 microseconds, 515 nanoseconds │ 70.3877 │ 1435.21 │ 4 │ 100 │ | ||
│ FLD.soa_cart_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 67 microseconds, 462 nanoseconds │ 58.9663 │ 1202.32 │ 4 │ 100 │ | ||
└─────────────────────────────────────────────────────────────────────┴──────────────────────────────────┴─────────┴─────────────┴────────────────┴────────┘ | ||
Kernel `add3(x1, x2, x3) = x1+x2+x3` and `n_reads_writes=4`: | ||
[ Info: ArrayType = CuArray | ||
Problem size: (63, 4, 4, 5400, 1), float_type = Float64, device_bandwidth_GBs=2039 | ||
┌─────────────────────────────────────────────────────────────────────┬───────────────────────────────────┬─────────┬─────────────┬────────────────┬────────┐ | ||
│ funcs │ time per call │ bw % │ achieved bw │ n-reads/writes │ n-reps │ | ||
├─────────────────────────────────────────────────────────────────────┼───────────────────────────────────┼─────────┼─────────────┼────────────────┼────────┤ | ||
│ FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; bm, nreps = 100) │ 106 microseconds, 783 nanoseconds │ 74.5051 │ 1519.16 │ 4 │ 100 │ | ||
│ FLD.aos_lin_offset!(X_aos, Y_aos, us; bm, nreps = 100) │ 102 microseconds, 472 nanoseconds │ 77.6396 │ 1583.07 │ 4 │ 100 │ | ||
│ FLD.soa_linear_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 102 microseconds, 523 nanoseconds │ 77.6008 │ 1582.28 │ 4 │ 100 │ | ||
│ FLD.soa_cart_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 106 microseconds, 834 nanoseconds │ 74.4694 │ 1518.43 │ 4 │ 100 │ | ||
└─────────────────────────────────────────────────────────────────────┴───────────────────────────────────┴─────────┴─────────────┴────────────────┴────────┘ | ||
Kernel `add3(x1, x2, x3) = x1` and `n_reads_writes=2`: | ||
[ Info: ArrayType = CuArray | ||
Problem size: (63, 4, 4, 5400, 1), float_type = Float32, device_bandwidth_GBs=2039 | ||
┌─────────────────────────────────────────────────────────────────────┬──────────────────────────────────┬─────────┬─────────────┬────────────────┬────────┐ | ||
│ funcs │ time per call │ bw % │ achieved bw │ n-reads/writes │ n-reps │ | ||
├─────────────────────────────────────────────────────────────────────┼──────────────────────────────────┼─────────┼─────────────┼────────────────┼────────┤ | ||
│ FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; bm, nreps = 100) │ 61 microseconds, 185 nanoseconds │ 32.5079 │ 662.837 │ 2 │ 100 │ | ||
│ FLD.aos_lin_offset!(X_aos, Y_aos, us; bm, nreps = 100) │ 31 microseconds, 376 nanoseconds │ 63.3926 │ 1292.57 │ 2 │ 100 │ | ||
│ FLD.soa_linear_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 31 microseconds, 120 nanoseconds │ 63.9141 │ 1303.21 │ 2 │ 100 │ | ||
│ FLD.soa_cart_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 44 microseconds, 53 nanoseconds │ 45.1499 │ 920.607 │ 2 │ 100 │ | ||
└─────────────────────────────────────────────────────────────────────┴──────────────────────────────────┴─────────┴─────────────┴────────────────┴────────┘ | ||
``` | ||
# CPU (Mac M1) | ||
``` | ||
[ Info: ArrayType = identity | ||
Problem size: (63, 4, 4, 5400, 1), float_type = Float32, device_bandwidth_GBs=2039 | ||
┌─────────────────────────────────────────────────────────────────────┬───────────────────────────────────┬──────────┬─────────────┬────────────────┬────────┐ | ||
│ funcs │ time per call (CPU) │ bw % │ achieved bw │ n-reads/writes │ n-reps │ | ||
├─────────────────────────────────────────────────────────────────────┼───────────────────────────────────┼──────────┼─────────────┼────────────────┼────────┤ | ||
│ FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; bm, nreps = 100) │ 16 milliseconds, 494 microseconds │ 0.241171 │ 4.91747 │ 4 │ 100 │ | ||
│ FLD.aos_lin_offset!(X_aos, Y_aos, us; bm, nreps = 100) │ 783 microseconds, 256 nanoseconds │ 5.07871 │ 103.555 │ 4 │ 100 │ | ||
│ FLD.soa_linear_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 790 microseconds, 894 nanoseconds │ 5.02966 │ 102.555 │ 4 │ 100 │ | ||
│ FLD.soa_cart_index!(X_soa, Y_soa, us; bm, nreps = 100) │ 12 milliseconds, 522 microseconds │ 0.317663 │ 6.47714 │ 4 │ 100 │ | ||
└─────────────────────────────────────────────────────────────────────┴───────────────────────────────────┴──────────┴─────────────┴────────────────┴────────┘ | ||
``` | ||
=# | ||
|
||
#! format: off | ||
module BenchmarkFieldLastIndex | ||
|
||
using CUDA | ||
include("benchmark_utils.jl") | ||
|
||
@inline function const_linear_index(us::UniversalSizesStatic, I, field_index) | ||
n = (get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us), 1) | ||
i = I + prod(n)*field_index | ||
return i | ||
end | ||
|
||
@inline function const_linear_index_reference(us::UniversalSizesStatic, I, field_index) | ||
CI = CartesianIndices((get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us), 1)) | ||
LI = LinearIndices((get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us), field_index+1)) | ||
return LI[CI[I] + CartesianIndex((0, 0, 0, 0, field_index))] | ||
end | ||
|
||
# add3(x1, x2, x3) = x1 + x2 + x3 | ||
add3(x1, x2, x3) = x1 | ||
|
||
function aos_cart_offset!(X, Y, us; nreps = 1, bm=nothing, n_trials = 30) | ||
if Y isa Array | ||
e = Inf | ||
CI = CartesianIndices((get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us), 1)) | ||
for t in 1:n_trials | ||
et = Base.@elapsed begin | ||
for i in 1:nreps | ||
@inbounds @simd for I in 1:get_N(us) | ||
CI1 = CI[I] | ||
CI2 = CI1 + CartesianIndex((0, 0, 0, 0, 1)) | ||
CI3 = CI1 + CartesianIndex((0, 0, 0, 0, 2)) | ||
Y[CI1] = add3(X[CI1], X[CI2], X[CI3]) | ||
end | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
else | ||
e = Inf | ||
kernel = CUDA.@cuda always_inline = true launch = false aos_cart_offset_kernel!(X,Y,us) | ||
config = CUDA.launch_configuration(kernel.fun) | ||
threads = min(get_N(us), config.threads) | ||
blocks = cld(get_N(us), threads) | ||
for t in 1:n_trials | ||
et = CUDA.@elapsed begin | ||
for i in 1:nreps # reduce variance / impact of launch latency | ||
kernel(X,Y,us; threads, blocks) | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
end | ||
push_info(bm; kernel_time_s=e/nreps, nreps, caller = @caller_name(@__FILE__), problem_size = size(us), n_reads_writes=4) | ||
return nothing | ||
end; | ||
function aos_cart_offset_kernel!(X, Y, us) | ||
@inbounds begin | ||
I = (CUDA.blockIdx().x - Int32(1)) * CUDA.blockDim().x + CUDA.threadIdx().x | ||
if I ≤ get_N(us) | ||
n = (get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us), 1) | ||
CI1 = CartesianIndices(map(x -> Base.OneTo(x), n))[I] | ||
CI2 = CI1 + CartesianIndex((0, 0, 0, 0, 1)) | ||
CI3 = CI1 + CartesianIndex((0, 0, 0, 0, 2)) | ||
Y[CI1] = add3(X[CI1], X[CI2], X[CI3]) | ||
end | ||
end | ||
return nothing | ||
end; | ||
|
||
function aos_lin_offset!(X, Y, us; nreps = 1, bm=nothing, n_trials = 30) | ||
if Y isa Array | ||
e = Inf | ||
for t in 1:n_trials | ||
et = Base.@elapsed begin | ||
for i in 1:nreps | ||
@inbounds @simd for I in 1:get_N(us) | ||
LY1 = const_linear_index(us, I, 0) | ||
LX1 = const_linear_index(us, I, 0) | ||
LX2 = const_linear_index(us, I, 1) | ||
LX3 = const_linear_index(us, I, 2) | ||
Y[LY1] = add3(X[LX1], X[LX2], X[LX3]) | ||
end | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
else | ||
e = Inf | ||
kernel = CUDA.@cuda always_inline = true launch = false aos_lin_offset_kernel!(X,Y,us) | ||
config = CUDA.launch_configuration(kernel.fun) | ||
threads = min(get_N(us), config.threads) | ||
blocks = cld(get_N(us), threads) | ||
for t in 1:n_trials | ||
et = CUDA.@elapsed begin | ||
for i in 1:nreps | ||
kernel(X,Y,us; threads, blocks) | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
end | ||
push_info(bm; kernel_time_s=e/nreps, nreps, caller = @caller_name(@__FILE__), problem_size = size(us), n_reads_writes=4) | ||
return nothing | ||
end; | ||
function aos_lin_offset_kernel!(X, Y, us) | ||
@inbounds begin | ||
I = (CUDA.blockIdx().x - Int32(1)) * CUDA.blockDim().x + CUDA.threadIdx().x | ||
if I ≤ get_N(us) | ||
LY1 = const_linear_index(us, I, 0) | ||
LX1 = const_linear_index(us, I, 0) | ||
LX2 = const_linear_index(us, I, 1) | ||
LX3 = const_linear_index(us, I, 2) | ||
Y[LY1] = add3(X[LX1], X[LX2], X[LX3]) | ||
end | ||
end | ||
return nothing | ||
end; | ||
|
||
function soa_cart_index!(X, Y, us; nreps = 1, bm=nothing, n_trials = 30) | ||
e = Inf | ||
if first(Y) isa Array | ||
CI = CartesianIndices((get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us))) | ||
for t in 1:n_trials | ||
et = Base.@elapsed begin | ||
for i in 1:nreps | ||
(y1,) = Y | ||
(x1, x2, x3) = X | ||
@inbounds @simd for I in 1:get_N(us) | ||
y1[CI[I]] = add3(x1[CI[I]], x2[CI[I]], x3[CI[I]]) | ||
end | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
else | ||
kernel = CUDA.@cuda always_inline = true launch = false soa_cart_index_kernel!(X,Y,us) | ||
config = CUDA.launch_configuration(kernel.fun) | ||
threads = min(get_N(us), config.threads) | ||
blocks = cld(get_N(us), threads) | ||
for t in 1:n_trials | ||
et = CUDA.@elapsed begin | ||
for i in 1:nreps # reduce variance / impact of launch latency | ||
kernel(X,Y,us; threads, blocks) | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
end | ||
push_info(bm; kernel_time_s=e/nreps, nreps, caller = @caller_name(@__FILE__), problem_size = size(us), n_reads_writes=4) | ||
return nothing | ||
end; | ||
function soa_cart_index_kernel!(X, Y, us) | ||
@inbounds begin | ||
I = (CUDA.blockIdx().x - Int32(1)) * CUDA.blockDim().x + CUDA.threadIdx().x | ||
if I ≤ get_N(us) | ||
CI = CartesianIndices((get_Nv(us), get_Nij(us), get_Nij(us), get_Nh(us))) | ||
(y1,) = Y | ||
(x1, x2, x3) = X | ||
y1[CI[I]] = add3(x1[CI[I]], x2[CI[I]], x3[CI[I]]) | ||
end | ||
end | ||
return nothing | ||
end; | ||
|
||
function soa_linear_index!(X, Y, us; nreps = 1, bm=nothing, n_trials = 30) | ||
e = Inf | ||
if first(Y) isa Array | ||
for t in 1:n_trials | ||
et = Base.@elapsed begin | ||
for i in 1:nreps | ||
(y1,) = Y | ||
(x1, x2, x3) = X | ||
@inbounds @simd for I in 1:get_N(us) | ||
y1[I] = add3(x1[I], x2[I], x3[I]) | ||
end | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
else | ||
kernel = CUDA.@cuda always_inline = true launch = false soa_linear_index_kernel!(X,Y,us) | ||
config = CUDA.launch_configuration(kernel.fun) | ||
threads = min(get_N(us), config.threads) | ||
blocks = cld(get_N(us), threads) | ||
for t in 1:n_trials | ||
et = CUDA.@elapsed begin | ||
for i in 1:nreps # reduce variance / impact of launch latency | ||
kernel(X,Y,us; threads, blocks) | ||
end | ||
end | ||
e = min(e, et) | ||
end | ||
end | ||
push_info(bm; kernel_time_s=e/nreps, nreps, caller = @caller_name(@__FILE__), problem_size = size(us), n_reads_writes=4) | ||
return nothing | ||
end; | ||
function soa_linear_index_kernel!(X, Y, us) | ||
@inbounds begin | ||
I = (CUDA.blockIdx().x - Int32(1)) * CUDA.blockDim().x + CUDA.threadIdx().x | ||
if I ≤ get_N(us) | ||
(y1,) = Y | ||
(x1, x2, x3) = X | ||
y1[I] = add3(x1[I], x2[I], x3[I]) | ||
end | ||
end | ||
return nothing | ||
end; | ||
|
||
end # module | ||
|
||
import .BenchmarkFieldLastIndex as FLD | ||
|
||
function fill_with_rand!(arr) | ||
FT = eltype(arr) | ||
T = typeof(arr) | ||
s = size(arr) | ||
arr .= T(rand(FT, s)) | ||
end | ||
|
||
using CUDA | ||
using Test | ||
@testset "Field last dim benchmark" begin | ||
bm = FLD.Benchmark(;problem_size=(63,4,4,5400,1), float_type=Float32) # size(problem_size, 4) == 1 to avoid double counting reads/writes | ||
ArrayType = CUDA.CuArray; | ||
# ArrayType = Base.identity; | ||
arr(float_type, problem_size, T) = T(zeros(float_type, problem_size...)) | ||
|
||
s = (63,4,4,5400,3); | ||
sY = (63,4,4,5400,1); | ||
st = (63,4,4,5400); | ||
ndofs = prod(st); | ||
us = FLD.UniversalSizesStatic(s[1], s[2], s[end-1]); | ||
|
||
X_aos = arr(bm.float_type, s, ArrayType); | ||
Y_aos = arr(bm.float_type, sY, ArrayType); | ||
X_aos_ref = arr(bm.float_type, s, ArrayType); | ||
Y_aos_ref = arr(bm.float_type, sY, ArrayType); | ||
X_soa = ntuple(_ -> arr(bm.float_type, st, ArrayType), 3); | ||
Y_soa = ntuple(_ -> arr(bm.float_type, st, ArrayType), 1); | ||
fill_with_rand!(X_aos) | ||
fill_with_rand!(Y_aos) | ||
X_aos_ref .= X_aos | ||
Y_aos_ref .= Y_aos | ||
for i in 1:3; X_soa[i] .= X_aos[:,:,:,:, i]; end | ||
for i in 1:1; Y_soa[i] .= Y_aos[:,:,:,:, i]; end | ||
@info "ArrayType = $ArrayType" | ||
|
||
FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; n_trials = 1, nreps = 1) | ||
FLD.aos_lin_offset!(X_aos, Y_aos, us; n_trials = 1, nreps = 1) | ||
FLD.soa_linear_index!(X_soa, Y_soa, us; n_trials = 1, nreps = 1) | ||
|
||
@test all(X_aos .== X_aos_ref) | ||
@test all(Y_aos .== Y_aos_ref) | ||
for i in 1:3; @test all(X_soa[i] .== X_aos_ref[:,:,:,:,i]); end | ||
for i in 1:1; @test all(Y_soa[i] .== Y_aos_ref[:,:,:,:,i]); end | ||
|
||
FLD.soa_cart_index!(X_soa, Y_soa, us; n_trials = 1, nreps = 1) | ||
|
||
for i in 1:3; @test all(X_soa[i] .== X_aos_ref[:,:,:,:,i]); end | ||
for i in 1:1; @test all(Y_soa[i] .== Y_aos_ref[:,:,:,:,i]); end | ||
|
||
FLD.aos_cart_offset!(X_aos_ref, Y_aos_ref, us; bm, nreps = 100) | ||
FLD.aos_lin_offset!(X_aos, Y_aos, us; bm, nreps = 100) | ||
FLD.soa_linear_index!(X_soa, Y_soa, us; bm, nreps = 100) | ||
FLD.soa_cart_index!(X_soa, Y_soa, us; bm, nreps = 100) | ||
|
||
FLD.tabulate_benchmark(bm) | ||
end | ||
|
||
# #! format: on |