-
Notifications
You must be signed in to change notification settings - Fork 2
/
utils.py
71 lines (53 loc) · 1.93 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import tensorflow as tf
from typing import List
import cv2
import os
import numpy as np
vocab = [x for x in "abcdefghijklmnopqrstuvwxyz'?!123456789 "]
char_to_num = tf.keras.layers.StringLookup(vocabulary=vocab, oov_token="")
# Mapping integers back to original characters
num_to_char = tf.keras.layers.StringLookup(
vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True
)
DATA_DIR = 'data'
def get_alignment_path(video_path):
"""Get align file path for given video path"""
video_name = os.path.basename(video_path) # get just video name
align_name = video_name.replace('.mpg', '.align') # construct align name
return os.path.join(DATA_DIR, 'alignments', align_name) # full path
def load_video(path: str) -> List[float]:
# print(path)
cap = cv2.VideoCapture(path)
frames = []
for _ in range(int(cap.get(cv2.CAP_PROP_FRAME_COUNT))):
ret, frame = cap.read()
frame = tf.image.rgb_to_grayscale(frame)
frames.append(frame[190:236, 80:220, :])
cap.release()
mean = tf.math.reduce_mean(frames)
std = tf.math.reduce_std(tf.cast(frames, tf.float32))
return tf.cast((frames - mean), tf.float32) / std
def load_alignments(path: str) -> List[str]:
# print(path)
with open(path, 'r') as f:
lines = f.readlines()
tokens = []
for line in lines:
line = line.split()
if line[2] != 'sil':
tokens = [*tokens, ' ', line[2]]
return char_to_num(tf.reshape(tf.strings.unicode_split(tokens, input_encoding='UTF-8'), (-1)))[1:]
def load_data(video_path):
# Load video frames
frames = load_video(video_path)
# Reshape here
if len(frames) > 75:
frames = frames[:75]
# Get align path, load if exists
align_path = get_alignment_path(video_path)
if os.path.exists(align_path):
alignments = load_alignments(align_path)
else:
# No alignment file found
alignments = np.array([])
return frames, alignments