Code for the Neural GPU model described in http://arxiv.org/abs/1511.08228. The extended version was described in https://arxiv.org/abs/1610.08613.
Requirements:
- TensorFlow (see tensorflow.org for how to install)
The model can be trained on the following algorithmic tasks:
sort
- Sort a symbol listkvsort
- Sort symbol keys in dictionaryid
- Return the same symbol listrev
- Reverse a symbol listrev2
- Reverse a symbol dictionary by keyincr
- Add one to a symbol valueadd
- Long decimal additionleft
- First symbol in listright
- Last symbol in listleft-shift
- Left shift a symbol listright-shift
- Right shift a symbol listbmul
- Long binary multiplicationmul
- Long decimal multiplicationdup
- Duplicate a symbol list with paddingbadd
- Long binary additionqadd
- Long quaternary additionsearch
- Search for symbol key in dictionary
It can also be trained on the WMT English-French translation task:
wmt
- WMT English-French translation (data will be downloaded)
The value range for symbols are defined by the vocab_size
flag.
In particular, the values are in the range vocab_size - 1
.
So if you set --vocab_size=16
(the default) then --problem=rev
will be reversing lists of 15 symbols, and --problem=id
will be identity
on a list of up to 15 symbols.
To train the model on the binary multiplication task run:
python neural_gpu_trainer.py --problem=bmul
This trains the Extended Neural GPU, to train the original model run:
python neural_gpu_trainer.py --problem=bmul --beam_size=0
While training, interim / checkpoint model parameters will be
written to /tmp/neural_gpu/
.
Once the amount of error gets down to what you're comfortable
with, hit Ctrl-C
to stop the training process. The latest
model parameters will be in /tmp/neural_gpu/neural_gpu.ckpt-<step>
and used on any subsequent run.
To evaluate a trained model on how well it decodes run:
python neural_gpu_trainer.py --problem=bmul --mode=1
To interact with a model (experimental, see code) run:
python neural_gpu_trainer.py --problem=bmul --mode=2
To train on WMT data, set a larger --nmaps and --vocab_size and avoid curriculum:
python neural_gpu_trainer.py --problem=wmt --vocab_size=32768 --nmaps=256
--vec_size=256 --curriculum_seq=1.0 --max_length=60 --data_dir ~/wmt
With less memory, try lower batch size, e.g. --batch_size=4
. With more GPUs
in your system, there will be a batch on every GPU so you can run larger models.
For example, --batch_size=4 --num_gpus=4 --nmaps=512 --vec_size=512
will
run a large model (512-size) on 4 GPUs, with effective batches of 4*4=16.
Maintained by Lukasz Kaiser (lukaszkaiser)