Author: Matjaž Mav
Mentors: doc. dr. Luka Šajn and izr. prof. dr. Vitomir Štruc
Organization: University of Ljubljana, Faculty of Computer and Information Science
TODO
- Docker
- NVIDIA Container Runtime
- Conda (see ./conda_env.yml)
- NVIDIA GPU, NVIDIA drivers (see NVlabs/stylegan2-ada)
- Create copy of the
.env
file, name itdev.env
and fill the values - conda create -n diploma_env python=3.9.7 deepface docker-py gitpython ipykernel ipython jupyter_client jupyter_core keras keras-preprocessing matplotlib networkx notebook numpy oauthlib opencv pandas pillow pygithub py-opencv python-dotenv pytorch pytorch-lightning requests scikit-learn scipy sklearn-contrib-lightning tensorboard tensorflow torchvision torchmetrics wandb -c conda-forge
- conda create env --name diploma python=3.9.7 deepface docker-py gitpython ipykernel ipython jupyter_client jupyter_core keras keras-preprocessing matplotlib networkx notebook numpy oauthlib opencv pandas pillow pygithub py-opencv python-dotenv pytorch pytorch-lightning requests scikit-learn scipy sklearn-contrib-lightning tensorboard tensorflow torchvision torchmetrics wandb -c conda-forge
- conda create env -n diploma -c conda-forge python=3.9.7 deepface docker-py gitpython ipykernel ipython jupyter_client jupyter_core keras keras-preprocessing matplotlib networkx notebook numpy oauthlib opencv pandas pillow pygithub py-opencv python-dotenv pytorch pytorch-lightning requests scikit-learn scipy sklearn-contrib-lightning tensorboard tensorflow torchvision torchmetrics wandb
List of useful commands:
# List processes using NVIDIA GPU resources
$ sudo fuser -v /dev/nvidia*
# List NVIDIA GPU information
$ nvidia-smi
# Run python script detached
$ rm nohup.out && nohup python script.py &
$ tail -f nohup.out