Skip to content

Latest commit

 

History

History
88 lines (68 loc) · 2.14 KB

DEVELOPERS.md

File metadata and controls

88 lines (68 loc) · 2.14 KB

Installation

Git clone this repository, and cd into directory for remaining commands

git clone https://github.com/openai/gpt-2.git && cd gpt-2

Then, follow instructions for either native or Docker installation.

Native Installation

All steps can optionally be done in a virtual environment using tools such as virtualenv or conda.

Install tensorflow 1.12 (with GPU support, if you have a GPU and want everything to run faster)

pip3 install tensorflow==1.12.0

or

pip3 install tensorflow-gpu==1.12.0

Install other python packages:

pip3 install -r requirements.txt

Download the model data

python3 download_model.py 124M
python3 download_model.py 355M
python3 download_model.py 774M
python3 download_model.py 1558M

Docker Installation

Build the Dockerfile and tag the created image as gpt-2:

docker build --tag gpt-2 -f Dockerfile.gpu . # or Dockerfile.cpu

Start an interactive bash session from the gpt-2 docker image.

You can opt to use the --runtime=nvidia flag if you have access to a NVIDIA GPU and a valid install of nvidia-docker 2.0.

docker run --runtime=nvidia -it gpt-2 bash

Running

WARNING: Samples are unfiltered and may contain offensive content.

Some of the examples below may include Unicode text characters. Set the environment variable:

export PYTHONIOENCODING=UTF-8

to override the standard stream settings in UTF-8 mode.

Unconditional sample generation

To generate unconditional samples from the small model:

python3 src/generate_unconditional_samples.py | tee /tmp/samples

There are various flags for controlling the samples:

python3 src/generate_unconditional_samples.py --top_k 40 --temperature 0.7 | tee /tmp/samples

To check flag descriptions, use:

python3 src/generate_unconditional_samples.py -- --help

Conditional sample generation

To give the model custom prompts, you can use:

python3 src/interactive_conditional_samples.py --top_k 40

To check flag descriptions, use:

python3 src/interactive_conditional_samples.py -- --help