BlueLM-7B 是由 vivo AI 全球研究院自主研发的大规模预训练语言模型,参数规模为 70 亿。BlueLM-7B 在 C-Eval 和 CMMLU 上均取得领先结果,对比同尺寸开源模型中具有较强的竞争力(截止11月1号)。本次发布共包含 7B 模型的 Base 和 Chat 两个版本。
模型下载链接见:
基座模型 | 对齐模型 |
---|---|
🤗 BlueLM-7B-Base | 🤗 BlueLM-7B-Chat |
🤗 BlueLM-7B-Base-32K | 🤗 BlueLM-7B-Chat-32K |
🤗 BlueLM-7B-Chat-4bits |
这里在 Autodl 平台中租赁一个3090 等 24G 显存的显卡机器,如下图所示镜像选择 PyTorch-->1.11.0-->3.8(ubuntu20.04)-->11.3,Cuda版本在11.3以上都可以。
接下来打开刚刚租用服务器的 JupyterLab(也可以使用vscode ssh远程连接服务器),并且打开其中的终端开始环境配置、模型下载和运行 demo。
pip 换源加速下载并安装依赖包
# 升级pip
python -m pip install --upgrade pip
# 设置pip镜像源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
# 安装软件依赖
pip install fastapi==0.104.1
pip install uvicorn==0.24.0.post1
pip install requests==2.25.1
pip install modelscope==1.11.0
pip install transformers==4.37.0
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1
pip install transformers_stream_generator==0.0.4
使用Modelscope API
下载BlueLM-7B-Chat
模型,模型路径为/root/autodl-tmp
。在 /root/autodl-tmp 下创建model_download.py文件内容如下:
from modelscope import snapshot_download
model_dir = snapshot_download("vivo-ai/BlueLM-7B-Chat", cache_dir='/root/autodl-tmp', revision="master")
在 /root/autodl-tmp 路径下新建 api.py 文件内容如下:
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import uvicorn
import json
import datetime
import torch
# 设置设备参数
DEVICE = "cuda" # 使用CUDA
DEVICE_ID = "0" # CUDA设备ID,如果未设置则为空
CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE # 组合CUDA设备信息
# 清理GPU内存函数
def torch_gc():
if torch.cuda.is_available(): # 检查是否可用CUDA
with torch.cuda.device(CUDA_DEVICE): # 指定CUDA设备
torch.cuda.empty_cache() # 清空CUDA缓存
torch.cuda.ipc_collect() # 收集CUDA内存碎片
# 创建FastAPI应用
app = FastAPI()
# 处理POST请求的端点
@app.post("/")
async def create_item(request: Request):
global model, tokenizer # 声明全局变量以便在函数内部使用模型和分词器
json_post_raw = await request.json() # 获取POST请求的JSON数据
json_post = json.dumps(json_post_raw) # 将JSON数据转换为字符串
json_post_list = json.loads(json_post) # 将字符串转换为Python对象
prompt = json_post_list.get('prompt') # 获取请求中的提示
max_length = json_post_list.get('max_length') # 获取请求中的最大长度
# 构建 messages
messages = f"[|Human|]:{prompt}[|AI|]:"
# 构建输入
inputs = tokenizer(messages, return_tensors="pt")
inputs = inputs.to("cuda:0")
# 通过模型获得输出
outputs = model.generate(**inputs, max_new_tokens=max_length)
result = tokenizer.decode(outputs.cpu()[0], skip_special_tokens=True)
now = datetime.datetime.now() # 获取当前时间
time = now.strftime("%Y-%m-%d %H:%M:%S") # 格式化时间为字符串
# 构建响应JSON
answer = {
"response": result,
"status": 200,
"time": time
}
# 构建日志信息
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(result) + '"'
print(log) # 打印日志
torch_gc() # 执行GPU内存清理
return answer # 返回响应
# 主函数入口
if __name__ == '__main__':
mode_name_or_path="vivo-ai/BlueLM-7B-Chat"
# 加载预训练的分词器和模型
tokenizer = AutoTokenizer.from_pretrained(mode_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(mode_name_or_path, trust_remote_code=True,torch_dtype=torch.bfloat16, device_map="auto")
model.generation_config = GenerationConfig.from_pretrained(mode_name_or_path)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model.eval() # 设置模型为评估模式
# 启动FastAPI应用
# 用6006端口可以将autodl的端口映射到本地,从而在本地使用api
uvicorn.run(app, host='127.0.0.1', port=6006, workers=1) # 在指定端口和主机上启动应用
在bash终端中输入以下命令运行api服务:
cd /root/autodl-tmp
python api.py
终端出现以下输出表示服务正在运行
默认服务端口为6006,通过 POST 方法进行调用,可以使用 curl 调用,新建一个终端在里面输入以下内容:
curl -X POST "http://127.0.0.1:6006" \
-H 'Content-Type: application/json' \
-d '{"prompt": "你好"}'
也可以使用 python 中的 requests 库进行调用,如下所示:
import requests
import json
def get_completion(prompt):
headers = {'Content-Type': 'application/json'}
data = {"prompt": prompt}
response = requests.post(url='http://127.0.0.1:6006', headers=headers, data=json.dumps(data))
return response.json()['response']
if __name__ == '__main__':
print(get_completion('你好'))
运行以后得到的返回值如下所示:
{"response":"你好 你好!很高兴见到你,有什么我可以帮助你的吗?","status":200,"time":"2024-03-20 12:09:29"}