Skip to content

Latest commit

 

History

History
338 lines (274 loc) · 18.4 KB

README.md

File metadata and controls

338 lines (274 loc) · 18.4 KB

Deita

🤗 HF Repo    📄 Paper    📚 6K Data    📚 10K Data

Welcome to Deita (Data-Efficient Instruction Tuning for Alignment) Project!

We will continue to update, please stay tuned!

What is Deita?

Deita is an open-sourced project designed to facilitate Automatic Data Selection for instruction tuning in Large Language Models (LLMs).

It includes:

  • Open-sourced Toolkits for automatic data selection in instruction tuning
  • Deita Datasets: A series of extremely lightweight, high-quality alignment SFT data. We release 6k-sized and 10k-sized datasets in the first release
  • Deita Models: A series of powerful models on par with SOTA chat LLMs with an extremely efficient instruction tuning Process. Deita models can be obained by training with 10x less instruction tuning data compared with other SOTA LLMs

News

Performance

🔔 Still curious about how far a small amount of high-quality data can lead LLMs?

Deita may provide an answer for you:

🔦 Highlights

Model Align Data Size MT-Bench AlpacaEval(%)
Zephyr-7B-sft SFT 200K 5.32 75.12
$\text{Zephyr-7B-}\beta$ SFT + DPO 200K SFT + 60K DPO 7.34 90.60
OpenChat-3.5 C-RLFT >> 70K C-RLFT 7.81 88.51
Starling-7B C-RLFT + APA >> 70K C-RLFT + 183K APA 8.09 91.99
Tulu-2-13B SFT 326K 6.70 78.90
Tulu-2-13B+DPO SFT + DPO 326K SFT + 60K DPO 7.00 89.50
LLaMA2-13B-Chat SFT + PPO -- 6.65 81.09
WizardLM-13B-v1.2 SFT >70K 7.09 89.17
Vicuna-13B-v1.5 SFT >125K 6.57 78.80
DEITA-7B-v1.0 (6K) SFT 6K 7.22 80.78
DEITA-7B-v1.0-sft SFT 10K 7.32 81.67
DEITA-7B-v1.0 SFT + DPO 6K SFT + 10K DPO 7.55 90.06

DEITA models are based on Mistral-7B-v0.1. 🔥

Please refer to this table for full evaluations including Open LLM Leaderboard as well, which includes DEITA models with LLaMA base models and comparisons with other data selection approaches.

📈 Full Evaluations

See full evaluations
Model Align Data Size MT-Bench AlpacaEval(%) OpenLLM (Avg.)
Proprietary Models
GPT-4-Turbo ? -- 9.32 97.70 --
GPT-4 SFT + PPO -- 8.99 95.03 --
Claude-2 SFT + PPO -- 8.06 91.36 --
GPT-3.5-turbo SFT + PPO -- 7.94 89.37 --
Open-sourced Models based on LLaMA-1-13B
LIMA SFT 1K SFT 4.29 41.98 59.82
WizardLM-13B SFT 70K SFT 6.35 75.31 58.96
Vicuna-13B-v1.3 SFT 125K SFT 6.39 82.11 60.01
Random SFT 10K SFT 6.03 71.52 60.14
DEITA-LLaMA1-13B-v1.0-sft SFT 10K SFT 6.60 78.01 64.27
Open-sourced Models based on LLaMA-2-13B
Tulu-2-13B SFT 326K SFT 6.70 78.90 --
Tulu-2-13B+DPO SFT + DPO 326K SFT + 60K DPO 7.00 89.50 --
LLaMA2-13B-Chat SFT + PPO -- 6.65 81.09 --
WizardLM-13B-v1.2 SFT >70K SFT 7.09 89.17 --
Vicuna-13B-v1.5 SFT 125K SFT 6.57 78.80 61.63
Random SFT 10K SFT 5.78 65.19 61.32
DEITA-LLaMA2-13B-v1.0-sft SFT 10K SFT 6.79 81.09 62.71
Open-sourced Models based on Mistral-7B
Mistral-7B-Instruct-v0.1 -- -- 6.84 69.65 60.45
Zephyr-7B-sft SFT 200K SFT 5.32 75.12 60.93
$\text{Zephyr-7B-}\beta$ SFT + DPO 200K SFT + 60K DPO 7.34 90.60 66.36
OpenChat-3.5 C-RLFT >> 70K C-RLFT 7.81 88.51 --
Starling-7B C-RLFT + APA >>70K C-RLFT + 183K APA 8.09 91.99 --
Random SFT 10K SFT 5.89 56.90 61.72
DEITA-7B-v1.0-sft (6K) SFT 6K SFT 7.22 80.78 64.94
DEITA-7B-v1.0-sft (10K) SFT 10K SFT 7.32 81.67 64.00
DEITA-7B-v1.0 SFT + DPO 6K SFT + 10K DPO 7.55 90.06 69.86

🚀 Deita Resources

Resource Link License
Deita Datasets
deita-6k-v0 🤗 HF Repo MIT License
deita-10k-v0 🤗 HF Repo MIT License
deita-complexity-scorer-data 🤗 HF Repo MIT License
deita-quality-scorer-data 🤗 HF Repo MIT License
deita-redundant-pool (100K) 🤗 HF Repo MIT License
deita-sota-pool (300K) 🤗 HF Repo MIT License
Scorers
deita-complexity-scorer 🤗 HF Repo LLaMA License
deita-quality-scorer 🤗 HF Repo LLaMA License
Deita Models
DEITA-7B-v1.0-sft 🤗 HF Repo Apache-2.0
DEITA-7B-v1.0 🤗 HF Repo Apache-2.0
DEITA-LLaMA2-13B-v1.0-sft 🤗 HF Repo LLaMA 2 License
DEITA-LLaMA1-13B-v1.0-sft 🤗 HF Repo LLaMA License

🏃‍♂️ How to start?

Installation

  git clone https://github.com/hkust-nlp/deita.git
  cd deita
  pip install -e .

Data Sample Scoring

If you wish to assess the quality of a response for a single sample, you can follow these steps:

from deita.selection.scorer import Llama_Scorer

model_name_or_path = "hkust-nlp/deita-quality-scorer"

scorer = Llama_Scorer(model_name_or_path)

# example input
input_text = "word to describe UI with helpful tooltips" # Example Input
output_text = "User-friendly or intuitive UI" # Example Output
quality_score = scorer.infer_quality(input_text, output_text)

print(quality_score)
# 2.0230105920381902

Deita also supports VLLM for faster inference. If you want to use VLLM for inference,

pip install vllm

And set is_vllm = True when initilizing scorer

scorer = Llama_Scorer(model_name_or_path, is_vllm = True)

To assess other dimensions of data samples, please refer to the examples/scoring

Deita Pipelines

You can use deita pipelines to perform a variety of operations on the dataset with only one line code and configurations.

  • Dataset Scoring
from deita.pipeline import Pipeline

pipeline = Pipeline("score_pipeline", 
                    data_path = args.data_path,   # json file with sharegpt format
                    scorer = args.scorer,   # [mistral, llama]
                    scorer_name_or_path = args.scorer_name_or_path,  # scorer name or path e.g. hkust-nlp/deita-complexity-scorer
                    is_vllm = args.is_vllm,  # launch with vllm [True, False]
                    score_type = args.score_type, # [complexity, quality]
                    output_path = args.output_path)  # output path (json format)

pipeline.run()
  • Get Embeddings

We use Huggingface Accelerate to enhance efficiency:

from deita.pipeline import Pipeline

embed_pipeline = Pipeline("embed_pipeline", 
                          data_path = args.data_path,   # json file with sharegpt format
                          output_path = args.output_path,  # output path (pickle format)
                          model_name_or_path = args.model_name_or_path,  # model name or path e.g. mistralai/Mistral-7B-v0.1
                          max_length = args.max_length,
                          use_flash_attention = args.use_flash_attention,  
                          batch_size_per_device = args.batch_size_per_device,
                          conv_template = args.conv_template,
                          only_answer = args.only_answer,
                          random_shuffle = args.random_shuffle,
                          bfloat16 = True
                          )

embed_pipeline.run()
CUDA_VISIBLE_DEVICES=$GPUIDX accelerate launch \
    --mixed_precision bf16 \
    --num_processes $NUMPROCESS \
    --num_machines 1 \
    examples/pipelines/embed_datasets.py \
    --use_flash_attention true \
    --data_path $DATAPATH \
    --output_path $OUTPUTPATH \
    --batch_size_per_device $BSZ
  • Score-first, Diversity-aware Selection
from deita.pipeline import Pipeline

filter_pipeline = Pipeline("filter_pipeline", 
                          data_path = args.data_path,  # json file with sharegpt format
                          other_data_path = args.other_data_path,  # embedding file path (pickle format)
                          threshold = args.threshold,  # filter threshold default: 0.9 
                          data_size = args.data_size,  # size of selected data
                          chunk_size = args.chunk_size,  # used for more efficient GPU computing  default: 100000
                          sort_key = args.sort_key,  # default: "complexity_scores,quality_scores"
                          output_path = args.output_path,  # json format output path
                          distance_metric = args.distance_metric,  # default: cosine
                          embedding_field = args.embedding_field,  # default: embedding
                          is_compression = args.is_compression,  # default: False
                          device = args.device  # GPU IDX, default: 0
                          )

filter_pipeline.run()

You can refer to examples/pipelines for more details. A doc will also be coming soon.

SFT Training

Please refer to examples/train/sft.sh

deepspeed --include localhost:${DEVICES} --master_port 29501 src/deita/alignment/train.py \
    --model_name_or_path ${MODELPATH} \
    --data_path ${DATAPATH} \
    --output_dir ${OUTPUTPATH}/${RUNNAME} \
    --num_train_epochs 6 \
    --per_device_train_batch_size ${BSZPERDEV} \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps ${GRADACC} \
    --eval_steps 50 \
    --save_strategy "no" \
    --save_steps 100 \
    --save_total_limit 10 \
    --learning_rate 2e-5 \
    --warmup_ratio 0.1 \
    --lr_scheduler_type "cosine" \
    --logging_steps 1 \
    --do_eval False \
    --evaluation_strategy "no" \
    --model_max_length 2048 \
    --lazy_preprocess True \
    --conv_template "vicuna_v1.1" \
    --mask_user True \
    --report_to "wandb" \
    --run_name ${RUNNAME} \
    --bf16 True \
    --deepspeed src/deita/ds_configs/deepspeed_config_zero2_no_offload.json

DPO Training

Please refer to examples/train/dpo.sh

deepspeed --include localhost:${DEVICES} --master_port 29502 src/deita/alignment/dpo_train.py \
    --model_name_or_path ${MODELPATH} \
    --json_path ${JSONPATH} \
    --data_split ${DATASPLIT} \
    --output_dir ${OUTPUTPATH}/${RUNNAME} \
    --num_train_epochs ${DPOEPOCH} \
    --beta 0.1 \
    --per_device_train_batch_size ${BSZPERDEV} \
    --per_device_eval_batch_size 1 \
    --gradient_accumulation_steps ${GRADACC} \
    --save_global_steps False \
    --eval_steps 50 \
    --save_strategy "no" \
    --save_steps 500 \
    --save_total_limit 1 \
    --learning_rate 5e-7 \
    --warmup_ratio 0.1 \
    --lr_scheduler_type "linear" \
    --logging_steps 1 \
    --do_eval False \
    --evaluation_strategy "no" \
    --model_max_length 2048 \
    --conv_template "vicuna_v1.1" \
    --report_to "wandb" \
    --run_name ${RUNNAME} \
    --bf16 True \
    --gradient_checkpointing True \
    --deepspeed src/deita/ds_configs/stage3_no_offloading_accelerate.json

Evaluation

💪 What's more?

This is the preview version of Deita project. We will continue to update including

  • Release data selection pipeline with efficient implementation
  • More automatic data selection strategies
  • CLI-Interface Supported
  • Online Demo

Citation

If you find the content of this project helpful, please cite our paper as follows:

@inproceedings{
liu2024what,
title={What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning},
author={Wei Liu and Weihao Zeng and Keqing He and Yong Jiang and Junxian He},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=BTKAeLqLMw}
}

Acknowledgement

For training code, we use the code template of fastchat.