-
Notifications
You must be signed in to change notification settings - Fork 0
/
Appendix-B.html
1185 lines (1146 loc) · 363 KB
/
Appendix-B.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="author" content="Afra Kilic, Supervisor: dr. ir. Joris Mulder" />
<meta name="date" content="2023-07-30" />
<title>Appendix-B</title>
<script>// Hide empty <a> tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) -->
// v0.0.1
// Written by JooYoung Seo ([email protected]) and Atsushi Yasumoto on June 1st, 2020.
document.addEventListener('DOMContentLoaded', function() {
const codeList = document.getElementsByClassName("sourceCode");
for (var i = 0; i < codeList.length; i++) {
var linkList = codeList[i].getElementsByTagName('a');
for (var j = 0; j < linkList.length; j++) {
if (linkList[j].innerHTML === "") {
linkList[j].setAttribute('aria-hidden', 'true');
}
}
}
});
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">
code {
white-space: pre;
}
.sourceCode {
overflow: visible;
}
</style>
<style type="text/css" data-origin="pandoc">
code.sourceCode > span { display: inline-block; line-height: 1.25; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
for (var j = 0; j < rules.length; j++) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue;
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') continue;
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">body {
background-color: #fff;
margin: 1em auto;
max-width: 700px;
overflow: visible;
padding-left: 2em;
padding-right: 2em;
font-family: "Open Sans", "Helvetica Neue", Helvetica, Arial, sans-serif;
font-size: 14px;
line-height: 1.35;
}
#TOC {
clear: both;
margin: 0 0 10px 10px;
padding: 4px;
width: 400px;
border: 1px solid #CCCCCC;
border-radius: 5px;
background-color: #f6f6f6;
font-size: 13px;
line-height: 1.3;
}
#TOC .toctitle {
font-weight: bold;
font-size: 15px;
margin-left: 5px;
}
#TOC ul {
padding-left: 40px;
margin-left: -1.5em;
margin-top: 5px;
margin-bottom: 5px;
}
#TOC ul ul {
margin-left: -2em;
}
#TOC li {
line-height: 16px;
}
table {
margin: 1em auto;
border-width: 1px;
border-color: #DDDDDD;
border-style: outset;
border-collapse: collapse;
}
table th {
border-width: 2px;
padding: 5px;
border-style: inset;
}
table td {
border-width: 1px;
border-style: inset;
line-height: 18px;
padding: 5px 5px;
}
table, table th, table td {
border-left-style: none;
border-right-style: none;
}
table thead, table tr.even {
background-color: #f7f7f7;
}
p {
margin: 0.5em 0;
}
blockquote {
background-color: #f6f6f6;
padding: 0.25em 0.75em;
}
hr {
border-style: solid;
border: none;
border-top: 1px solid #777;
margin: 28px 0;
}
dl {
margin-left: 0;
}
dl dd {
margin-bottom: 13px;
margin-left: 13px;
}
dl dt {
font-weight: bold;
}
ul {
margin-top: 0;
}
ul li {
list-style: circle outside;
}
ul ul {
margin-bottom: 0;
}
pre, code {
background-color: #f7f7f7;
border-radius: 3px;
color: #333;
white-space: pre-wrap;
}
pre {
border-radius: 3px;
margin: 5px 0px 10px 0px;
padding: 10px;
}
pre:not([class]) {
background-color: #f7f7f7;
}
code {
font-family: Consolas, Monaco, 'Courier New', monospace;
font-size: 85%;
}
p > code, li > code {
padding: 2px 0px;
}
div.figure {
text-align: center;
}
img {
background-color: #FFFFFF;
padding: 2px;
border: 1px solid #DDDDDD;
border-radius: 3px;
border: 1px solid #CCCCCC;
margin: 0 5px;
}
h1 {
margin-top: 0;
font-size: 35px;
line-height: 40px;
}
h2 {
border-bottom: 4px solid #f7f7f7;
padding-top: 10px;
padding-bottom: 2px;
font-size: 145%;
}
h3 {
border-bottom: 2px solid #f7f7f7;
padding-top: 10px;
font-size: 120%;
}
h4 {
border-bottom: 1px solid #f7f7f7;
margin-left: 8px;
font-size: 105%;
}
h5, h6 {
border-bottom: 1px solid #ccc;
font-size: 105%;
}
a {
color: #0033dd;
text-decoration: none;
}
a:hover {
color: #6666ff; }
a:visited {
color: #800080; }
a:visited:hover {
color: #BB00BB; }
a[href^="http:"] {
text-decoration: underline; }
a[href^="https:"] {
text-decoration: underline; }
code > span.kw { color: #555; font-weight: bold; }
code > span.dt { color: #902000; }
code > span.dv { color: #40a070; }
code > span.bn { color: #d14; }
code > span.fl { color: #d14; }
code > span.ch { color: #d14; }
code > span.st { color: #d14; }
code > span.co { color: #888888; font-style: italic; }
code > span.ot { color: #007020; }
code > span.al { color: #ff0000; font-weight: bold; }
code > span.fu { color: #900; font-weight: bold; }
code > span.er { color: #a61717; background-color: #e3d2d2; }
</style>
</head>
<body>
<h1 class="title toc-ignore">Appendix-B</h1>
<h4 class="author">Afra Kilic, Supervisor: dr. ir. Joris Mulder</h4>
<h4 class="date">2023-07-30</h4>
<div id="mcmc-model-search-method" class="section level2">
<h2>MCMC Model Search Method</h2>
<p>In this part of the simulation, we will apply the Bayes factor presented for the variable selection for linear and nonlinear regression models. In Appendix-A, the consistency of the Bayes factor approximated via BIC is checked. However, when the number of candidate variables is large, exhaustive calculation of the posterior model probabilities for all possible models becomes infeasible. For instance, given <span class="math inline">\(J=20\)</span>, there are more than three billions (<span class="math inline">\(3^{20}\)</span>) possible models under consideration. This problem can be addressed by using MCMC model search method in the selection algorithm with different prior model probability setting.</p>
<p><br />
<br />
</p>
<p>A popular MCMC model search method was proposed by George and McCulloch (1993) for cases where the model space is large. The basic idea of the MCMC algorithm for Bayesian variable selection is to sequentially sample <span class="math inline">\(\gamma\)</span> from its posterior distribution, <span class="math inline">\(\pi(\gamma|Y)\)</span>, and select the best model which appears most often in the sample of <span class="math inline">\(\gamma\)</span>. When using conjugate priors the marginal posterior distribution of <span class="math inline">\(\gamma\)</span> has an analytical form:</p>
<p><span class="math display">\[\begin{equation}
\tag{1}
\pi(\gamma|Y) = P(M_\gamma|Y) \propto BF_{\gamma0}P(M_\gamma)
\end{equation}\]</span></p>
<p>where <span class="math inline">\(BF_{\gamma0}\)</span> is given in and <span class="math inline">\(P(M_\gamma) = \frac{1}{3^J}\)</span>.</p>
<p>Gibbs sampler algorithm is only applied to <span class="math inline">\(\gamma\)</span>, i.e.i to sequentially sample along <span class="math inline">\(\gamma_p^t\)</span> for <span class="math inline">\(p=1, ..., J\)</span> and <span class="math inline">\(t= 1,...,T\)</span> with T the iteration number:</p>
<p><span class="math display">\[\begin{equation}
\tag{2}
\gamma_{1}^{0},...,\gamma_{J}^{0}, \gamma_{1}^{1},...,\gamma_{J}^{1}, ..., \gamma_{1}^{t},...,\gamma_{J}^{t},...,
\end{equation}\]</span></p>
<p>where <span class="math inline">\(\gamma_{1}^{0},...,\gamma_{P}^{0}\)</span> denote the initial values, which can be set as zero. In the Gibbs algorithm the subsequent values of <span class="math inline">\(\gamma_j^t\)</span> can be sample from its conditional posterior distribution given the latest values of all other <span class="math inline">\(\gamma\)</span>s.</p>
<p>The conditional distribution of <span class="math inline">\(\gamma_j\)</span> given all other <span class="math inline">\(\gamma\)</span>s is Bernoulli. The three probabilities of sampling <span class="math inline">\(\gamma_j^{t} = r\)</span> for <span class="math inline">\(r=0,1,2\)</span> at iteration rate <span class="math inline">\(t\)</span> are</p>
<p><span class="math display">\[\begin{equation}
\tag{3}
P(\gamma^{t}_{j}= r|\gamma^{t}_{-j}, y) = \frac{\pi(\gamma^{t}_{j}= r|\gamma^{t}_{-j}, y)}{\sum_{r}\pi(\gamma^{t}_{j}= r|\gamma^{t}_{-j}, y)}
\end{equation}\]</span></p>
<p><br />
</p>
<p>where <span class="math inline">\(\gamma^{t}_{-j} = (\gamma^t_1, ..., \gamma^{t}_{j-1},\gamma^{t-1}_{j+1},...,\gamma^{t-1}_{J})\)</span> denotes the latest values of <span class="math inline">\(\gamma\)</span> except <span class="math inline">\(\gamma_j\)</span>. Note that when sampling <span class="math inline">\(\gamma_j^t, (\gamma_{t+1} + ... + \gamma_{J})\)</span> have not been sampled at iteration <span class="math inline">\(t\)</span>, and thus their values at the <span class="math inline">\(t-1\)</span> iteration are used. <span class="math inline">\(\pi(\gamma^{t}_{j}= r|\gamma^{t}_{-j}, y)\)</span> can be computed using Equation (1). However, regardless of the number of variables <span class="math inline">\(J\)</span>, a fixed <span class="math inline">\(P(M_\gamma)\)</span> causes the algorithm to include more variables as <span class="math inline">\(J\)</span> increases. This phenomenon, called multiplicity, arises from multiple tests or comparison in variable selection. This is most obvious in orthogonal situation where <span class="math inline">\(J\)</span> independent tests on the effect type of the variable <span class="math inline">\(x_j\)</span> are performed. Therefore, for instance, at iteration rate <span class="math inline">\(t\)</span>, three independent models are compared to test the effect type of variable <span class="math inline">\(x_j\)</span> on the outcome variable, and the prior model probabilities for each model will be <span class="math inline">\(P(M_{\gamma_j}^t) = 1/3\)</span>. Regardless of <span class="math inline">\(J\)</span>, <span class="math inline">\(P(M_{\gamma_j}^t)\)</span> remains the same at every iteration for each variable. However, <span class="math inline">\(P(M_{\gamma_j}^t) = 1/3\)</span> suggests a model size of <span class="math inline">\(2J/3\)</span> a priori since each variable has a probability of <span class="math inline">\(2/3\)</span> of being included (either as linear or nonlinear), and there are <span class="math inline">\(J\)</span> total number of variables. This problem remains in case of other fixed prior choices, therefore no fixed choice of prior which is independent from the total number of variables can adjust for multiplicity.</p>
<p><br />
</p>
<p><br />
</p>
<p>To correct for the multiplicity, we specify a Dirichlet distribution, (<span class="math inline">\(\alpha_0\)</span>, <span class="math inline">\(\alpha_1\)</span>, <span class="math inline">\(\alpha_2\)</span>), for the prior probabilities of effect types. For variable <span class="math inline">\(x_j\)</span>, prior probabilities of having nonlinear, linear and zero effects respectively are denoted by <span class="math inline">\(p_{2}\)</span>, <span class="math inline">\(p_{1}\)</span> and <span class="math inline">\(p_{0}\)</span>. <span class="math inline">\(p_{2}+p_{1}+p_{0}=1\)</span> and <span class="math inline">\(\alpha_0\)</span>, <span class="math inline">\(\alpha_1\)</span>, <span class="math inline">\(\alpha_2\)</span> are the corresponding parameters for the Dirichlet distribution. Hence, Equation (12) can be rewritten by correcting multiplicity via multiplying each <span class="math inline">\(\pi(\gamma^{t}_{j}= r|\gamma^{t}_{-j}, y)\)</span> with <span class="math inline">\(p_r^t\)</span>:</p>
<p><span class="math display">\[\begin{equation}
\tag{4}
P(\gamma^{t}_{j}= r|\gamma^{t}_{-j}, p_r^t, Y) = \frac{\pi(\gamma^{t}_{j}= r|\gamma^{t}_{-j}, Y) p_r^t}{\sum_{r}(\pi(\gamma^{t}_{j}= r|\gamma^{t}_{-j}, Y)p_r^t)}
\end{equation}\]</span></p>
<p>where <span class="math inline">\(p_r^t\)</span> can be written as:</p>
<p><span class="math display">\[\begin{equation}
\tag{5}
p_r^t \sim dirichlet (\alpha_0^{t-1} + |G_0 ^{t-1}|, \alpha_1^{t-1} + |G_1^{t-1}|, \alpha_2^{t-1} + |G_2^{t-1}|)
\end{equation}\]</span></p>
<p><span class="math inline">\(G_0\)</span>, <span class="math inline">\(G_1\)</span>, and <span class="math inline">\(G_2\)</span> are the numbers of variables of which the effect types are zero, linear and nonlinear respectively, and they are set to zero at <span class="math inline">\(t=0\)</span>. Note that <span class="math inline">\(G_0+G_1+G_2 = J\)</span>. First, three sampling probabilities, either <span class="math inline">\(\gamma^{t}_{j} = 0\)</span>, <span class="math inline">\(\gamma^{t}_{j} = 1\)</span> or <span class="math inline">\(\gamma^{t}_{j} = 2\)</span> will be sampled using Equation (4). Thereafter, the algorithm visits the next <span class="math inline">\(\gamma^{t}_{j+1}\)</span>. Once all <span class="math inline">\(\gamma^t\)</span> have been sampled, at the end of iteration <span class="math inline">\(t\)</span>, the algorithm samples for <span class="math inline">\(p_r^{t+1}\)</span> using the resulted <span class="math inline">\(\gamma^t\)</span>. Then, the algorithm proceeds to the <span class="math inline">\(t+1\)</span> iteration and sample for the next <span class="math inline">\(\gamma^{t+1}\)</span> with updated prior probabilities, <span class="math inline">\(p_r^{t+1}\)</span>, until the Gibbs chain converges to obtain the samples shown in (2). After obtaining the Gibbs samples and discarding the burn-in phase (e.g., the first 1000 iterations), the best model will be the one with the highest frequency in the useful samples.</p>
<p><br />
</p>
<p><strong>Gibbs Sampler Algorithm:</strong> in total <span class="math inline">\(3 \times P \times T\)</span> model fit<br />
</p>
<p>Initialize <span class="math inline">\(\gamma^{0} = 0\)</span> and <span class="math inline">\(p_r^0= 1/3\)</span> at <span class="math inline">\(t=0\)</span><br />
</p>
<p><strong>repeat</strong><br />
</p>
<p><span class="math inline">\(\qquad\)</span>for <span class="math inline">\(p = 1,..., J\)</span> do<br />
</p>
<p><span class="math inline">\(\qquad\)</span> <span class="math inline">\(\qquad\)</span> Sample <span class="math inline">\(\gamma^{t} = 0\)</span> with probability <span class="math inline">\(P(\gamma^{t}_{j}= 0|\gamma^{t}_{-j}, p_r^t,Y)\)</span><br />
</p>
<p><span class="math inline">\(\qquad\)</span> <span class="math inline">\(\qquad\)</span> Sample <span class="math inline">\(\gamma^{t} = 1\)</span> with probability <span class="math inline">\(P(\gamma^{t}_{j}= 1|\gamma^{t}_{-j},p_r^t, Y)\)</span><br />
</p>
<p><span class="math inline">\(\qquad\)</span> <span class="math inline">\(\qquad\)</span> Sample <span class="math inline">\(\gamma^{t} = 2\)</span> with probability <span class="math inline">\(P(\gamma^{t}_{j}= 2|\gamma^{t}_{-j},p_r^t, Y)\)</span><br />
</p>
<p><strong>end for</strong><br />
</p>
<p><span class="math inline">\(\qquad\)</span> Sample <span class="math inline">\(p_r^{t+1}\)</span> with probability <span class="math inline">\(dirichlet(\alpha_0^t + |G_0^t|, \alpha_1^t + |G_1^t|, \alpha_2^t + |G_2^t|)\)</span><br />
</p>
<p><strong>set</strong> <span class="math inline">\(t=t+1\)</span><br />
</p>
<p><strong>until</strong> Gibbs chain converges.</p>
</div>
<div id="performance-of-the-model-search-method" class="section level2">
<h2>Performance of the Model Search Method</h2>
<p>In this subsection, we conducted a simulation study to assess the performance of the MCMC model search method. We considered four levels of number of variables <span class="math inline">\(\{J \in 6, 10, 15, 20 \}\)</span>, and four levels of sample sizes <span class="math inline">\(\{ n \in 50, 100, 250, 500 \}\)</span>, and seven levels of effect sizes <span class="math inline">\(\{ \beta \in .1, .5, 1, 1.5, 2, 2.5, 3 \}\)</span>. For each scenario, 100 data sets were generated. The candidate variables <span class="math inline">\(x_{1},..., x_{J}\)</span> of length <span class="math inline">\(n\)</span> were independently simulated from a standard normal distribution <span class="math inline">\(N(0,1)\)</span>. The nonlinear relationship is defined with the exponential function. Therefore, the outcome variable, <span class="math inline">\(y\)</span>, was calculated with a zero intercept as follows:</p>
<p><span class="math display">\[\begin{equation}
\tag{6}
y = \beta exp(x_1) + \beta exp(x_2) + \beta x_3 + \beta x_4 + \beta^0 X_{J-4} + \epsilon
\end{equation}\]</span></p>
<p>where <span class="math inline">\(\beta^0 = 0\)</span>, <span class="math inline">\(\epsilon \sim N(0, \sigma^2)\)</span> and <span class="math inline">\(\sigma^2 = .1\)</span>. Thus, the first two variables exhibit a nonlinear effect, the next two variables have a linear effect, and the remaining variables have no effect on the outcome variable.</p>
<p><br />
</p>
<p> </p>
<p>The following function function <code>bayesian_selection</code> generates the model in (6) using the specified parameters as input variables. Then it applies the variable selection algorithm using MCMC model search method with the specified number of iteration which is 1000 in this simulation.</p>
<p><br />
</p>
<p>It returns a list including the following values:</p>
<ul>
<li>Is the selected model the same with the true model. 1: Yes and 0: No</li>
<li>Posterior probability of the true model</li>
<li>Posterior probability of the selected model</li>
<li>Selected model</li>
<li>True model</li>
<li><span class="math inline">\(\gamma\)</span> draws in (2)</li>
<li><span class="math inline">\(p_r\)</span> draws in (5)</li>
</ul>
<p><br />
</p>
<p>Input variables:</p>
<ul>
<li><code>beta</code>: <span class="math inline">\(\beta\)</span></li>
<li><code>n</code>: sample size <span class="math inline">\(n\)</span></li>
<li><code>knots</code>: k (number of basis function = k-1)</li>
<li><code>n_var</code>: total number of variables <span class="math inline">\(J\)</span></li>
<li><code>iteration</code>: burn-in</li>
<li><code>gamma_prior</code>: initial <span class="math inline">\(\gamma\)</span> values (<span class="math inline">\(\gamma_{1}^{0},...,\gamma_{P}^{0}\)</span>)</li>
<li><code>prior_p</code>: initial <span class="math inline">\(p_r\)</span> values (<span class="math inline">\(p_r^0\)</span>)</li>
</ul>
<p><br />
</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1"></a>bayesian_selection<-<span class="st"> </span><span class="cf">function</span>(<span class="dt">beta =</span> <span class="fl">0.8</span>, <span class="dt">n =</span> <span class="dv">100</span>, </span>
<span id="cb1-2"><a href="#cb1-2"></a> <span class="dt">sigma2 =</span> <span class="fl">0.1</span>, <span class="dt">n_var =</span> <span class="dv">10</span>, </span>
<span id="cb1-3"><a href="#cb1-3"></a> <span class="dt">knots=</span> <span class="dv">4</span>,</span>
<span id="cb1-4"><a href="#cb1-4"></a> <span class="dt">iteration=</span><span class="dv">1000</span>,</span>
<span id="cb1-5"><a href="#cb1-5"></a> <span class="dt">gamma_prior =</span> <span class="kw">c</span>(<span class="kw">rep</span>(<span class="dv">0</span>, n_var)),</span>
<span id="cb1-6"><a href="#cb1-6"></a> <span class="dt">prior_p=</span><span class="kw">c</span>(<span class="dv">1</span><span class="op">/</span><span class="dv">3</span>, <span class="dv">1</span><span class="op">/</span><span class="dv">3</span>, <span class="dv">1</span><span class="op">/</span><span class="dv">3</span>)){</span>
<span id="cb1-7"><a href="#cb1-7"></a> </span>
<span id="cb1-8"><a href="#cb1-8"></a> <span class="co">#penalty is calculated as max edf - df(lm) for each variable swhere max edf = k-1 and df(lm)=1 </span></span>
<span id="cb1-9"><a href="#cb1-9"></a> penalty=knots<span class="dv">-2</span></span>
<span id="cb1-10"><a href="#cb1-10"></a> <span class="co">#Data Generation</span></span>
<span id="cb1-11"><a href="#cb1-11"></a> <span class="co">#independent predictor variables </span></span>
<span id="cb1-12"><a href="#cb1-12"></a> variables <-<span class="st"> </span><span class="kw">matrix</span>(<span class="ot">NA</span>, <span class="dt">nrow=</span>n, <span class="dt">ncol=</span>n_var)</span>
<span id="cb1-13"><a href="#cb1-13"></a> <span class="kw">colnames</span>(variables) <-<span class="kw">c</span>(<span class="kw">paste0</span>(<span class="st">"x"</span>, <span class="dv">1</span><span class="op">:</span>n_var))</span>
<span id="cb1-14"><a href="#cb1-14"></a> <span class="cf">for</span> (i <span class="cf">in</span> <span class="dv">1</span><span class="op">:</span>n_var){</span>
<span id="cb1-15"><a href="#cb1-15"></a> variables[,i] =<span class="st"> </span><span class="kw">rnorm</span>(n)</span>
<span id="cb1-16"><a href="#cb1-16"></a> }</span>
<span id="cb1-17"><a href="#cb1-17"></a> <span class="co">#outcome variable</span></span>
<span id="cb1-18"><a href="#cb1-18"></a> error <-<span class="st"> </span><span class="kw">rnorm</span>(n,<span class="dt">sd=</span><span class="kw">sqrt</span>(sigma2)); y=error</span>
<span id="cb1-19"><a href="#cb1-19"></a> </span>
<span id="cb1-20"><a href="#cb1-20"></a> <span class="co">#randomly selecting the nonlinears and the zero relationships </span></span>
<span id="cb1-21"><a href="#cb1-21"></a> nonlinear_true <-<span class="st"> </span><span class="kw">c</span>(<span class="st">"x1"</span>, <span class="st">"x2"</span>)</span>
<span id="cb1-22"><a href="#cb1-22"></a> linear_true <-<span class="st"> </span><span class="kw">c</span>(<span class="st">"x3"</span>, <span class="st">"x4"</span>)</span>
<span id="cb1-23"><a href="#cb1-23"></a> zero_true <-<span class="st"> </span><span class="kw">setdiff</span>(<span class="kw">colnames</span>(variables), <span class="kw">c</span>(nonlinear_true, linear_true))</span>
<span id="cb1-24"><a href="#cb1-24"></a> </span>
<span id="cb1-25"><a href="#cb1-25"></a> <span class="co"># relationship definitions and creating the true model</span></span>
<span id="cb1-26"><a href="#cb1-26"></a> <span class="co">#nonlinear effects</span></span>
<span id="cb1-27"><a href="#cb1-27"></a> nonlinear_indices <-<span class="st"> </span><span class="kw">match</span>(nonlinear_true, <span class="kw">colnames</span>(variables))</span>
<span id="cb1-28"><a href="#cb1-28"></a> <span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="op">:</span><span class="kw">length</span>(nonlinear_indices)){y=y<span class="op">+</span>beta<span class="op">*</span><span class="kw">exp</span>(variables[, nonlinear_indices][,i])}</span>
<span id="cb1-29"><a href="#cb1-29"></a> </span>
<span id="cb1-30"><a href="#cb1-30"></a> <span class="co">#zero effects</span></span>
<span id="cb1-31"><a href="#cb1-31"></a> zero_indices <-<span class="st"> </span><span class="kw">match</span>(zero_true, <span class="kw">colnames</span>(variables))</span>
<span id="cb1-32"><a href="#cb1-32"></a> <span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="op">:</span><span class="kw">length</span>(zero_indices)){y=y<span class="op">+</span><span class="dv">0</span><span class="op">*</span>variables[,zero_indices][,i]}</span>
<span id="cb1-33"><a href="#cb1-33"></a> </span>
<span id="cb1-34"><a href="#cb1-34"></a> <span class="co">#linear effects</span></span>
<span id="cb1-35"><a href="#cb1-35"></a> linear_indices<-<span class="st"> </span><span class="kw">match</span>(linear_true, <span class="kw">colnames</span>(variables))</span>
<span id="cb1-36"><a href="#cb1-36"></a> <span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="op">:</span><span class="st"> </span><span class="kw">length</span>(linear_indices)){y=y<span class="op">+</span>beta<span class="op">*</span>variables[,linear_indices][,i]}</span>
<span id="cb1-37"><a href="#cb1-37"></a> </span>
<span id="cb1-38"><a href="#cb1-38"></a> y =<span class="st"> </span>y <span class="op">-</span><span class="st"> </span><span class="kw">mean</span>(y) <span class="co">#not considering the intercept </span></span>
<span id="cb1-39"><a href="#cb1-39"></a> </span>
<span id="cb1-40"><a href="#cb1-40"></a> <span class="co">#true model gamma sequence </span></span>
<span id="cb1-41"><a href="#cb1-41"></a> true_gamma =<span class="st"> </span><span class="kw">c</span>(<span class="kw">rep</span>(<span class="ot">NA</span>, n_var))</span>
<span id="cb1-42"><a href="#cb1-42"></a> true_gamma[nonlinear_indices]=<span class="dv">2</span>; true_gamma[zero_indices]=<span class="dv">0</span>; true_gamma[linear_indices]=<span class="dv">1</span></span>
<span id="cb1-43"><a href="#cb1-43"></a> data_original<-<span class="st"> </span><span class="kw">as.data.frame</span>(variables) <span class="co">#transforming the matrix into a dataframe</span></span>
<span id="cb1-44"><a href="#cb1-44"></a> </span>
<span id="cb1-45"><a href="#cb1-45"></a> gamma_update_k <-gamma_prior <span class="co">#initial gamma specification</span></span>
<span id="cb1-46"><a href="#cb1-46"></a> gamma_draws <-<span class="st"> </span><span class="kw">matrix</span>(<span class="ot">NA</span>, <span class="dt">nrow=</span> iteration, <span class="dt">ncol =</span> n_var) <span class="co">#matrix for gamma draws</span></span>
<span id="cb1-47"><a href="#cb1-47"></a> ps<-<span class="st"> </span><span class="kw">matrix</span>(<span class="ot">NA</span>, <span class="dt">nrow =</span> iteration<span class="op">+</span><span class="dv">1</span>, <span class="dt">ncol =</span> <span class="dv">3</span>) <span class="co">#matrix for p_draws</span></span>
<span id="cb1-48"><a href="#cb1-48"></a> </span>
<span id="cb1-49"><a href="#cb1-49"></a> pb<-progress_bar<span class="op">$</span><span class="kw">new</span>(<span class="dt">format =</span> <span class="st">"(:spin) [:bar] :percent [Elapsed time: :elapsedfull || Estimated time remaining: :eta]"</span>,</span>
<span id="cb1-50"><a href="#cb1-50"></a> <span class="dt">total =</span> iteration,</span>
<span id="cb1-51"><a href="#cb1-51"></a> <span class="dt">complete =</span> <span class="st">"="</span>, <span class="co"># Completion bar character</span></span>
<span id="cb1-52"><a href="#cb1-52"></a> <span class="dt">incomplete =</span> <span class="st">"-"</span>, <span class="co"># Incomplete bar character</span></span>
<span id="cb1-53"><a href="#cb1-53"></a> <span class="dt">current =</span> <span class="st">">"</span>, <span class="co"># Current bar character</span></span>
<span id="cb1-54"><a href="#cb1-54"></a> <span class="dt">clear =</span> <span class="ot">FALSE</span>, <span class="co"># If TRUE, clears the bar when finish</span></span>
<span id="cb1-55"><a href="#cb1-55"></a> <span class="dt">width =</span> <span class="dv">100</span>) <span class="co"># Width of the progress bar</span></span>
<span id="cb1-56"><a href="#cb1-56"></a> <span class="cf">for</span>(s <span class="cf">in</span> <span class="dv">1</span><span class="op">:</span>iteration){</span>
<span id="cb1-57"><a href="#cb1-57"></a> pb<span class="op">$</span><span class="kw">tick</span>()</span>
<span id="cb1-58"><a href="#cb1-58"></a> <span class="cf">for</span>(k <span class="cf">in</span> <span class="dv">1</span><span class="op">:</span>n_var){</span>
<span id="cb1-59"><a href="#cb1-59"></a> data =<span class="st"> </span>data_original</span>
<span id="cb1-60"><a href="#cb1-60"></a> gamma_update_k1 <-<span class="st"> </span>gamma_update_k[<span class="op">-</span><span class="kw">c</span>(k)]</span>
<span id="cb1-61"><a href="#cb1-61"></a> </span>
<span id="cb1-62"><a href="#cb1-62"></a> a <-<span class="st"> </span>data[, k] <span class="co">#the variable of interest </span></span>
<span id="cb1-63"><a href="#cb1-63"></a> data <-<span class="st"> </span>data[, <span class="op">-</span>k] <span class="co">#the remaining variables </span></span>
<span id="cb1-64"><a href="#cb1-64"></a> </span>
<span id="cb1-65"><a href="#cb1-65"></a> <span class="co"># for linear effects</span></span>
<span id="cb1-66"><a href="#cb1-66"></a> linears <-<span class="st"> </span><span class="kw">c</span>()</span>
<span id="cb1-67"><a href="#cb1-67"></a> <span class="cf">if</span>(<span class="kw">length</span>(gamma_update_k1[gamma_update_k1 <span class="op">==</span><span class="st"> </span><span class="dv">1</span>]) <span class="op">!=</span><span class="st"> </span><span class="dv">0</span>){</span>
<span id="cb1-68"><a href="#cb1-68"></a> </span>
<span id="cb1-69"><a href="#cb1-69"></a> <span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="op">:</span><span class="kw">ncol</span>(data[<span class="kw">which</span>(gamma_update_k1 <span class="op">==</span><span class="st"> </span><span class="dv">1</span>)])){</span>
<span id="cb1-70"><a href="#cb1-70"></a> linears <-<span class="st"> </span><span class="kw">c</span>(linears, <span class="kw">paste</span>(<span class="kw">c</span>(<span class="kw">colnames</span>(data[<span class="kw">which</span>(gamma_update_k1 <span class="op">==</span><span class="st"> </span><span class="dv">1</span>)][i])), <span class="dt">collapse=</span> <span class="st">""</span>))</span>
<span id="cb1-71"><a href="#cb1-71"></a> } </span>
<span id="cb1-72"><a href="#cb1-72"></a> }</span>
<span id="cb1-73"><a href="#cb1-73"></a> </span>
<span id="cb1-74"><a href="#cb1-74"></a> <span class="co">#for nonlinear effects</span></span>
<span id="cb1-75"><a href="#cb1-75"></a> non_linears <-<span class="st"> </span><span class="kw">c</span>()</span>
<span id="cb1-76"><a href="#cb1-76"></a> <span class="cf">if</span>(<span class="kw">length</span>(gamma_update_k1[gamma_update_k1 <span class="op">==</span><span class="st"> </span><span class="dv">2</span>]) <span class="op">!=</span><span class="st"> </span><span class="dv">0</span>) {</span>
<span id="cb1-77"><a href="#cb1-77"></a> <span class="cf">for</span>(i <span class="cf">in</span> <span class="dv">1</span><span class="op">:</span><span class="kw">ncol</span>(data[<span class="kw">which</span>(gamma_update_k1 <span class="op">==</span><span class="st"> </span><span class="dv">2</span>)])){</span>
<span id="cb1-78"><a href="#cb1-78"></a> non_linears <-<span class="st"> </span><span class="kw">c</span>(non_linears, <span class="kw">paste</span>(<span class="kw">c</span>(<span class="st">'s('</span>, <span class="kw">colnames</span>(data[<span class="kw">which</span>(gamma_update_k1 <span class="op">==</span><span class="st"> </span><span class="dv">2</span>)][i]), <span class="st">',k='</span>,knots,<span class="st">')'</span>), <span class="dt">collapse=</span> <span class="st">""</span>))</span>
<span id="cb1-79"><a href="#cb1-79"></a> } </span>
<span id="cb1-80"><a href="#cb1-80"></a> }</span>
<span id="cb1-81"><a href="#cb1-81"></a> </span>
<span id="cb1-82"><a href="#cb1-82"></a> vars <-<span class="st"> </span><span class="kw">c</span>(linears, non_linears) <span class="co">#vector for non-zero effects to include to the models below</span></span>
<span id="cb1-83"><a href="#cb1-83"></a> </span>
<span id="cb1-84"><a href="#cb1-84"></a> <span class="co">#model fitting</span></span>
<span id="cb1-85"><a href="#cb1-85"></a> <span class="cf">if</span>(<span class="kw">length</span>(vars) <span class="op">!=</span><span class="st"> </span><span class="dv">0</span>){ <span class="co">#remaining variables contain non-zero effect</span></span>
<span id="cb1-86"><a href="#cb1-86"></a> M1 <-<span class="st"> </span><span class="kw">gam</span>(<span class="kw">as.formula</span>(<span class="kw">paste</span>(<span class="st">'y'</span>, <span class="st">'~'</span>, <span class="kw">paste</span>(vars, <span class="dt">collapse =</span> <span class="st">"+"</span>))), <span class="dt">data =</span> data)</span>
<span id="cb1-87"><a href="#cb1-87"></a> M2 <-<span class="st"> </span><span class="kw">gam</span>(<span class="kw">as.formula</span>(<span class="kw">paste</span>(<span class="st">'y'</span>, <span class="st">'~'</span>, <span class="st">'a +'</span>, <span class="kw">paste</span>(vars, <span class="dt">collapse =</span> <span class="st">"+"</span>))), <span class="dt">data =</span> data) <span class="co">#1</span></span>
<span id="cb1-88"><a href="#cb1-88"></a> M3 <-<span class="st"> </span><span class="kw">gam</span>(<span class="kw">as.formula</span>(<span class="kw">paste</span>(<span class="st">'y'</span>, <span class="st">'~'</span>, <span class="st">'s(a, k='</span>,knots, <span class="st">') +'</span>, <span class="kw">paste</span>(vars, <span class="dt">collapse =</span> <span class="st">"+"</span>))), <span class="dt">data =</span> data) <span class="co">#2</span></span>
<span id="cb1-89"><a href="#cb1-89"></a> } <span class="cf">else</span>{ <span class="co">#remaining variables do not contain non-zero effect</span></span>
<span id="cb1-90"><a href="#cb1-90"></a> M1 <-<span class="st"> </span><span class="kw">gam</span>(y <span class="op">~</span><span class="st"> </span><span class="dv">1</span>, <span class="dt">data =</span> data)</span>
<span id="cb1-91"><a href="#cb1-91"></a> M2 <-<span class="st"> </span><span class="kw">gam</span>(y <span class="op">~</span><span class="st"> </span>a, <span class="dt">data =</span> data) <span class="co">#1</span></span>
<span id="cb1-92"><a href="#cb1-92"></a> M3 <-<span class="st"> </span><span class="kw">gam</span>(y <span class="op">~</span><span class="st"> </span><span class="kw">s</span>(a, <span class="dt">k=</span>knots), <span class="dt">data =</span> data)</span>
<span id="cb1-93"><a href="#cb1-93"></a> }</span>
<span id="cb1-94"><a href="#cb1-94"></a> </span>
<span id="cb1-95"><a href="#cb1-95"></a> <span class="co">#BIC scores </span></span>
<span id="cb1-96"><a href="#cb1-96"></a> bic_M1 <-<span class="st"> </span>(<span class="op">-</span><span class="dv">2</span>) <span class="op">*</span><span class="st"> </span><span class="kw">head</span>(<span class="kw">logLik</span>(M1)) <span class="op">+</span><span class="st"> </span><span class="kw">attr</span>(<span class="kw">logLik</span>(M1), <span class="st">"df"</span>)<span class="op">*</span><span class="st"> </span><span class="kw">log</span>(n)</span>
<span id="cb1-97"><a href="#cb1-97"></a> bic_M2 <-<span class="st"> </span>(<span class="op">-</span><span class="dv">2</span>) <span class="op">*</span><span class="st"> </span><span class="kw">head</span>(<span class="kw">logLik</span>(M2)) <span class="op">+</span><span class="st"> </span><span class="kw">attr</span>(<span class="kw">logLik</span>(M2), <span class="st">"df"</span>)<span class="op">*</span><span class="st"> </span><span class="kw">log</span>(n)</span>
<span id="cb1-98"><a href="#cb1-98"></a> bic_M3 <-<span class="st"> </span>(<span class="op">-</span><span class="dv">2</span>) <span class="op">*</span><span class="st"> </span><span class="kw">head</span>(<span class="kw">logLik</span>(M3)) <span class="op">+</span><span class="st"> </span>(<span class="kw">attr</span>(<span class="kw">logLik</span>(M2), <span class="st">"df"</span>) <span class="op">+</span><span class="st"> </span>penalty)<span class="op">*</span><span class="st"> </span><span class="kw">log</span>(n) <span class="co">#penalty depends on the #of knots</span></span>
<span id="cb1-99"><a href="#cb1-99"></a> </span>
<span id="cb1-100"><a href="#cb1-100"></a> </span>
<span id="cb1-101"><a href="#cb1-101"></a> <span class="co">#Bayes Factors </span></span>
<span id="cb1-102"><a href="#cb1-102"></a> BF11 <-<span class="st"> </span><span class="kw">exp</span>((bic_M1 <span class="op">-</span><span class="st"> </span>bic_M1) <span class="op">/</span><span class="dv">2</span>) <span class="co">#null against the null</span></span>
<span id="cb1-103"><a href="#cb1-103"></a> BF21_ <-<span class="st"> </span><span class="kw">exp</span>((bic_M1 <span class="op">-</span><span class="st"> </span>bic_M2) <span class="op">/</span><span class="dv">2</span>) <span class="co">#linear against the null</span></span>
<span id="cb1-104"><a href="#cb1-104"></a> BF31_ <-<span class="st"> </span><span class="kw">exp</span>((bic_M1 <span class="op">-</span><span class="st"> </span>bic_M3) <span class="op">/</span><span class="dv">2</span>) <span class="co">#nonlinear against the null </span></span>
<span id="cb1-105"><a href="#cb1-105"></a> </span>
<span id="cb1-106"><a href="#cb1-106"></a> </span>
<span id="cb1-107"><a href="#cb1-107"></a> <span class="co">#infinity BFs</span></span>
<span id="cb1-108"><a href="#cb1-108"></a> <span class="cf">if</span>(BF21_ <span class="op">==</span><span class="st"> "-Inf"</span>){BF21 =<span class="st"> </span><span class="fl">-1e5</span>} <span class="cf">else</span> <span class="cf">if</span>(BF21_<span class="op">==</span><span class="st"> "Inf"</span>) {BF21 =<span class="st"> </span><span class="fl">1e5</span>} <span class="cf">else</span>{BF21=BF21_}</span>
<span id="cb1-109"><a href="#cb1-109"></a> <span class="cf">if</span>(BF31_ <span class="op">==</span><span class="st"> "-Inf"</span>){BF31 =<span class="st"> </span><span class="fl">-1e5</span>} <span class="cf">else</span> <span class="cf">if</span>(BF31_ <span class="op">==</span><span class="st"> "Inf"</span>) {BF31 =<span class="st"> </span><span class="fl">1e5</span>} <span class="cf">else</span>{BF31=BF31_}</span>
<span id="cb1-110"><a href="#cb1-110"></a> </span>
<span id="cb1-111"><a href="#cb1-111"></a> <span class="co">#Posterior Probabilities</span></span>
<span id="cb1-112"><a href="#cb1-112"></a> zero <-<span class="st"> </span>(prior_p[<span class="dv">1</span>] <span class="op">*</span><span class="st"> </span>BF11) <span class="op">/</span><span class="st"> </span><span class="kw">sum</span>(prior_p[<span class="dv">1</span>] <span class="op">*</span><span class="st"> </span>BF11, prior_p[<span class="dv">2</span>]<span class="op">*</span>BF21, prior_p[<span class="dv">3</span>]<span class="op">*</span><span class="st"> </span>BF31)</span>
<span id="cb1-113"><a href="#cb1-113"></a> one <-<span class="st"> </span>(prior_p[<span class="dv">2</span>] <span class="op">*</span><span class="st"> </span>BF21) <span class="op">/</span><span class="st"> </span><span class="kw">sum</span>(prior_p[<span class="dv">1</span>] <span class="op">*</span><span class="st"> </span>BF11, prior_p[<span class="dv">2</span>]<span class="op">*</span>BF21, prior_p[<span class="dv">3</span>]<span class="op">*</span><span class="st"> </span>BF31)</span>
<span id="cb1-114"><a href="#cb1-114"></a> two <-<span class="st"> </span>(prior_p[<span class="dv">3</span>] <span class="op">*</span><span class="st"> </span>BF31) <span class="op">/</span><span class="st"> </span><span class="kw">sum</span>(prior_p[<span class="dv">1</span>] <span class="op">*</span><span class="st"> </span>BF11, prior_p[<span class="dv">2</span>]<span class="op">*</span>BF21, prior_p[<span class="dv">3</span>]<span class="op">*</span><span class="st"> </span>BF31)</span>
<span id="cb1-115"><a href="#cb1-115"></a> </span>
<span id="cb1-116"><a href="#cb1-116"></a> </span>
<span id="cb1-117"><a href="#cb1-117"></a> </span>
<span id="cb1-118"><a href="#cb1-118"></a> <span class="co">#sampling the effect type of the variable of interest </span></span>
<span id="cb1-119"><a href="#cb1-119"></a> gamma_update_k[k] <-<span class="st"> </span><span class="kw">sample</span>(<span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">2</span>), <span class="dt">size=</span><span class="dv">1</span>, <span class="dt">prob =</span> <span class="kw">c</span>(zero, one, two)) </span>
<span id="cb1-120"><a href="#cb1-120"></a> }</span>
<span id="cb1-121"><a href="#cb1-121"></a> </span>
<span id="cb1-122"><a href="#cb1-122"></a> <span class="co">#multiplicity correction for the next chain </span></span>
<span id="cb1-123"><a href="#cb1-123"></a> prior_p <-<span class="st"> </span><span class="kw">rdirichlet</span>(<span class="dv">1</span>, <span class="kw">c</span>(<span class="dv">1</span><span class="op">+</span><span class="kw">length</span>(gamma_update_k[<span class="kw">which</span>(gamma_update_k <span class="op">==</span><span class="st"> </span><span class="dv">0</span>)]), <span class="co">#alpha1 = 1</span></span>
<span id="cb1-124"><a href="#cb1-124"></a> <span class="dv">1</span><span class="op">+</span><span class="kw">length</span>(gamma_update_k[<span class="kw">which</span>(gamma_update_k <span class="op">==</span><span class="st"> </span><span class="dv">1</span>)]), <span class="co">#alpha2 = 1</span></span>
<span id="cb1-125"><a href="#cb1-125"></a> <span class="dv">1</span><span class="op">+</span><span class="kw">length</span>(gamma_update_k[<span class="kw">which</span>(gamma_update_k <span class="op">==</span><span class="st"> </span><span class="dv">2</span>)])))</span>
<span id="cb1-126"><a href="#cb1-126"></a> ps[s<span class="op">+</span><span class="dv">1</span>, ] <-<span class="st"> </span>prior_p</span>
<span id="cb1-127"><a href="#cb1-127"></a> gamma_draws[s,] <-<span class="st"> </span>gamma_update_k</span>
<span id="cb1-128"><a href="#cb1-128"></a> }</span>
<span id="cb1-129"><a href="#cb1-129"></a> <span class="co">#posterior probability calculation of the true model </span></span>
<span id="cb1-130"><a href="#cb1-130"></a> posterior <-<span class="st"> </span><span class="kw">data.table</span>(gamma_draws)</span>
<span id="cb1-131"><a href="#cb1-131"></a> frequency <-<span class="st"> </span><span class="kw">as.matrix</span>(posterior[,<span class="kw">list</span>(<span class="dt">posterior=</span>.N),<span class="dt">by=</span><span class="kw">names</span>(posterior)][<span class="kw">order</span>(posterior,<span class="dt">decreasing=</span>T)])</span>
<span id="cb1-132"><a href="#cb1-132"></a> t=<span class="kw">apply</span>(frequency[,<span class="op">-</span>(n_var<span class="op">+</span><span class="dv">1</span>)], <span class="dv">1</span>, <span class="cf">function</span>(x) <span class="kw">return</span>(<span class="kw">all</span>(x <span class="op">==</span><span class="st"> </span>true_gamma))) <span class="co">#checking any true model among the draws</span></span>
<span id="cb1-133"><a href="#cb1-133"></a> pp_t<-<span class="st"> </span><span class="cf">if</span> (<span class="kw">any</span>(t)<span class="op">==</span><span class="ot">FALSE</span>) <span class="dv">0</span> <span class="cf">else</span> <span class="kw">as.numeric</span>(frequency[<span class="kw">which</span>(t),(n_var<span class="op">+</span><span class="dv">1</span>)])<span class="op">/</span>iteration <span class="co">##posterior prob calculation of the true</span></span>
<span id="cb1-134"><a href="#cb1-134"></a> pp_s <-<span class="st"> </span><span class="kw">as.numeric</span>(frequency[<span class="dv">1</span>,(n_var<span class="op">+</span><span class="dv">1</span>)])<span class="op">/</span>iteration <span class="co">##posterior prob calculation of the selected</span></span>
<span id="cb1-135"><a href="#cb1-135"></a> results <-<span class="st"> </span><span class="kw">list</span>(<span class="st">"is true"</span> =<span class="st"> </span><span class="cf">if</span>(<span class="kw">identical</span>(<span class="kw">as.vector</span>(frequency[<span class="dv">1</span>,<span class="dv">1</span><span class="op">:</span>n_var]),true_gamma) <span class="op">==</span><span class="st"> </span><span class="ot">TRUE</span>) <span class="dv">1</span> <span class="cf">else</span> <span class="dv">0</span>,</span>
<span id="cb1-136"><a href="#cb1-136"></a> <span class="st">"posterior probability_true"</span> =<span class="st"> </span>pp_t,</span>
<span id="cb1-137"><a href="#cb1-137"></a> <span class="st">"posterior probability_selected"</span> =<span class="st"> </span>pp_s,</span>
<span id="cb1-138"><a href="#cb1-138"></a> <span class="st">"selected model"</span> =<span class="st"> </span><span class="kw">as.vector</span>(frequency[<span class="dv">1</span>,<span class="dv">1</span><span class="op">:</span>n_var]),</span>
<span id="cb1-139"><a href="#cb1-139"></a> <span class="st">"true model"</span> =<span class="st"> </span>true_gamma,</span>
<span id="cb1-140"><a href="#cb1-140"></a> <span class="st">"gamma draws"</span> =<span class="st"> </span>gamma_draws,</span>
<span id="cb1-141"><a href="#cb1-141"></a> <span class="st">"p draws"</span> =<span class="st"> </span>ps)</span>
<span id="cb1-142"><a href="#cb1-142"></a> <span class="kw">return</span>(results)</span>
<span id="cb1-143"><a href="#cb1-143"></a>}</span></code></pre></div>
<div id="convergence-of-gibbs-sampler-chain" class="section level3">
<h3>Convergence of Gibbs sampler chain</h3>
<p>To start, we need to discard the initial burn-in phase and ensure the convergence of the chain. Monitoring the sample of <span class="math inline">\(\gamma\)</span>, which is a vector of discrete variables that fluctuates in the chain, is not recommended. Instead, we monitor the largest posterior probability among all possible models given the current sample since it serves as the criterion for selecting the best model. To check the Gibbs sampler chain, we examine every 100 samples. For instance, if in the first 100 samples, <span class="math inline">\(M_\gamma\)</span> appears most frequently, say 40 times, then the probability is 0.4. Subsequently, if for the first 200 samples, M0c0 (which is often the same as <span class="math inline">\(M_\gamma\)</span>) has the largest count, say 100, then the probability becomes 0.5. As the number of iterations in the Gibbs sampler increases, the largest posterior probability should converge to a certain value, allowing us to confidently select the best model.<br />
</p>
</div>
<div id="j6" class="section level3">
<h3>J=6</h3>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1"></a>chain_<span class="dv">6</span> <-<span class="st"> </span><span class="kw">bayesian_selection_m</span>(<span class="dt">iteration =</span> <span class="dv">10000</span>, <span class="dt">n_var =</span> <span class="dv">6</span>) <span class="co">#fit</span></span>
<span id="cb2-2"><a href="#cb2-2"></a></span>
<span id="cb2-3"><a href="#cb2-3"></a>chain_<span class="dv">6</span>_pp <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">rep</span>(<span class="ot">NA</span>, <span class="dv">100</span>))<span class="co">#matrix to store the posterior probabilities at every 100 iteration</span></span>
<span id="cb2-4"><a href="#cb2-4"></a><span class="cf">for</span> (i <span class="cf">in</span> <span class="dv">1</span><span class="op">:</span><span class="dv">100</span>){</span>
<span id="cb2-5"><a href="#cb2-5"></a> gamma_draws <-<span class="st"> </span>chain_<span class="dv">6</span><span class="op">$</span><span class="st">`</span><span class="dt">gamma draws</span><span class="st">`</span></span>
<span id="cb2-6"><a href="#cb2-6"></a> posterior <-<span class="st"> </span><span class="kw">data.table</span>(gamma_draws[<span class="dv">1</span><span class="op">:</span>(i<span class="op">*</span><span class="dv">100</span>),])</span>
<span id="cb2-7"><a href="#cb2-7"></a> frequency <-<span class="st"> </span><span class="kw">as.matrix</span>(posterior[,<span class="kw">list</span>(<span class="dt">posterior=</span>.N),<span class="dt">by=</span><span class="kw">names</span>(posterior)][<span class="kw">order</span>(posterior,<span class="dt">decreasing=</span>T)])</span>
<span id="cb2-8"><a href="#cb2-8"></a> pp_s <-<span class="st"> </span><span class="kw">as.numeric</span>(frequency[<span class="dv">1</span>,(<span class="dv">6</span><span class="op">+</span><span class="dv">1</span>)])<span class="op">/</span>(i<span class="op">*</span><span class="dv">100</span>) <span class="co">##posterior prob calculation of the selected</span></span>
<span id="cb2-9"><a href="#cb2-9"></a> chain_<span class="dv">6</span>_pp[i] =<span class="st"> </span>pp_s</span>
<span id="cb2-10"><a href="#cb2-10"></a>}</span></code></pre></div>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1"></a><span class="kw">plot</span>(<span class="kw">c</span>(<span class="dv">100</span><span class="op">*</span><span class="kw">c</span>(<span class="dv">1</span><span class="op">:</span><span class="dv">100</span>)), chain_<span class="dv">6</span>_pp, <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">ylim=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>), </span>
<span id="cb3-2"><a href="#cb3-2"></a> <span class="dt">ylab =</span> <span class="st">"Posterior probability of the selected model"</span>, <span class="dt">xlab =</span> <span class="st">"T"</span>, <span class="dt">main =</span> <span class="st">"J=6"</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
</div>
<div id="j20" class="section level3">
<h3>J=20</h3>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1"></a>chain_<span class="dv">20</span> <-<span class="st"> </span><span class="kw">bayesian_selection_m</span>(<span class="dt">iteration =</span> <span class="dv">10000</span>, <span class="dt">n_var =</span> <span class="dv">20</span>) <span class="co">#fit</span></span>
<span id="cb4-2"><a href="#cb4-2"></a></span>
<span id="cb4-3"><a href="#cb4-3"></a>chain_<span class="dv">20</span>_pp <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">rep</span>(<span class="ot">NA</span>, <span class="dv">100</span>))<span class="co">#matrix to store the posterior probabilities at every 100 iteration</span></span>
<span id="cb4-4"><a href="#cb4-4"></a><span class="cf">for</span> (i <span class="cf">in</span> <span class="dv">1</span><span class="op">:</span><span class="dv">100</span>){</span>
<span id="cb4-5"><a href="#cb4-5"></a> gamma_draws <-<span class="st"> </span>chain_<span class="dv">20</span><span class="op">$</span><span class="st">`</span><span class="dt">gamma draws</span><span class="st">`</span></span>
<span id="cb4-6"><a href="#cb4-6"></a> posterior <-<span class="st"> </span><span class="kw">data.table</span>(gamma_draws[<span class="dv">1</span><span class="op">:</span>(i<span class="op">*</span><span class="dv">100</span>),])</span>
<span id="cb4-7"><a href="#cb4-7"></a> frequency <-<span class="st"> </span><span class="kw">as.matrix</span>(posterior[,<span class="kw">list</span>(<span class="dt">posterior=</span>.N),<span class="dt">by=</span><span class="kw">names</span>(posterior)][<span class="kw">order</span>(posterior,<span class="dt">decreasing=</span>T)])</span>
<span id="cb4-8"><a href="#cb4-8"></a> pp_s <-<span class="st"> </span><span class="kw">as.numeric</span>(frequency[<span class="dv">1</span>,(<span class="dv">20</span><span class="op">+</span><span class="dv">1</span>)])<span class="op">/</span>(i<span class="op">*</span><span class="dv">100</span>) <span class="co">##posterior prob calculation of the selected</span></span>
<span id="cb4-9"><a href="#cb4-9"></a> chain_<span class="dv">20</span>_pp[i] =<span class="st"> </span>pp_s</span>
<span id="cb4-10"><a href="#cb4-10"></a>}</span></code></pre></div>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1"></a><span class="kw">plot</span>(<span class="kw">c</span>(<span class="dv">100</span><span class="op">*</span><span class="kw">c</span>(<span class="dv">1</span><span class="op">:</span><span class="dv">100</span>)), chain_<span class="dv">20</span>_pp, <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">ylim=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>), </span>
<span id="cb5-2"><a href="#cb5-2"></a> <span class="dt">ylab =</span> <span class="st">"Posterior probability of the selected model"</span>, <span class="dt">xlab =</span> <span class="st">"T"</span>, <span class="dt">main =</span> <span class="st">"J=20"</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<p><br />
</p>
<ul>
<li>The posterior probability of the selected model against the iteration number for <span class="math inline">\(\gamma\)</span> given <span class="math inline">\(J=6\)</span> and <span class="math inline">\(J=20\)</span> under fixed prior probabilities. The chain starts with the null model <span class="math inline">\(\gamma = 0\)</span>. Both, when <span class="math inline">\(J=6\)</span> and <span class="math inline">\(J=20\)</span>, the chain converges rapidly, stabilizing after around 2,000 iterations. However, due to the time limitations of the study, we decided to discard the first 1,000 iterations for the variable selection, despite the Gibbs sampler chain suggesting the need for more iterations.</li>
</ul>
<p><br />
<br />
</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1"></a><span class="co"># Run the loop in parallel</span></span>
<span id="cb6-2"><a href="#cb6-2"></a><span class="kw">detectCores</span>()</span>
<span id="cb6-3"><a href="#cb6-3"></a><span class="kw">registerDoParallel</span>(<span class="dv">30</span>)</span>
<span id="cb6-4"><a href="#cb6-4"></a>trials=<span class="dv">100</span></span></code></pre></div>
</div>
<div id="sample-size-n" class="section level3">
<h3>Sample Size <span class="math inline">\(n\)</span></h3>
<ul>
<li>The sample size varied from <span class="math inline">\(n=50\)</span> to <span class="math inline">\(n=500\)</span> given <span class="math inline">\(\beta = .5\)</span> and <span class="math inline">\(\beta = 2\)</span> for <span class="math inline">\(J=10\)</span></li>
</ul>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1"></a><span class="co">####SAMPLE SIZES </span></span>
<span id="cb7-2"><a href="#cb7-2"></a>xresults_n50 <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb7-3"><a href="#cb7-3"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb7-4"><a href="#cb7-4"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb7-5"><a href="#cb7-5"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb7-6"><a href="#cb7-6"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span>.<span class="dv">5</span>, <span class="dt">n=</span><span class="dv">50</span>)</span>
<span id="cb7-7"><a href="#cb7-7"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="dv">2</span>, <span class="dt">n=</span><span class="dv">50</span>)</span>
<span id="cb7-8"><a href="#cb7-8"></a> </span>
<span id="cb7-9"><a href="#cb7-9"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb7-10"><a href="#cb7-10"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb7-11"><a href="#cb7-11"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb7-12"><a href="#cb7-12"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb7-13"><a href="#cb7-13"></a> }</span>
<span id="cb7-14"><a href="#cb7-14"></a></span>
<span id="cb7-15"><a href="#cb7-15"></a>xresults_n100 <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb7-16"><a href="#cb7-16"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb7-17"><a href="#cb7-17"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb7-18"><a href="#cb7-18"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb7-19"><a href="#cb7-19"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span>.<span class="dv">5</span>, <span class="dt">n=</span><span class="dv">100</span>)</span>
<span id="cb7-20"><a href="#cb7-20"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="dv">2</span>, <span class="dt">n=</span><span class="dv">100</span>)</span>
<span id="cb7-21"><a href="#cb7-21"></a> </span>
<span id="cb7-22"><a href="#cb7-22"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb7-23"><a href="#cb7-23"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb7-24"><a href="#cb7-24"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb7-25"><a href="#cb7-25"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb7-26"><a href="#cb7-26"></a> }</span>
<span id="cb7-27"><a href="#cb7-27"></a></span>
<span id="cb7-28"><a href="#cb7-28"></a>xresults_n250 <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb7-29"><a href="#cb7-29"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb7-30"><a href="#cb7-30"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb7-31"><a href="#cb7-31"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb7-32"><a href="#cb7-32"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span>.<span class="dv">5</span>, <span class="dt">n=</span><span class="dv">250</span>)</span>
<span id="cb7-33"><a href="#cb7-33"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="dv">2</span>, <span class="dt">n=</span><span class="dv">250</span>)</span>
<span id="cb7-34"><a href="#cb7-34"></a> </span>
<span id="cb7-35"><a href="#cb7-35"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb7-36"><a href="#cb7-36"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb7-37"><a href="#cb7-37"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb7-38"><a href="#cb7-38"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb7-39"><a href="#cb7-39"></a> }</span>
<span id="cb7-40"><a href="#cb7-40"></a></span>
<span id="cb7-41"><a href="#cb7-41"></a>xresults_n500 <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb7-42"><a href="#cb7-42"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb7-43"><a href="#cb7-43"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb7-44"><a href="#cb7-44"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb7-45"><a href="#cb7-45"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span>.<span class="dv">5</span>, <span class="dt">n=</span><span class="dv">500</span>)</span>
<span id="cb7-46"><a href="#cb7-46"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="dv">2</span>, <span class="dt">n=</span><span class="dv">500</span>)</span>
<span id="cb7-47"><a href="#cb7-47"></a> </span>
<span id="cb7-48"><a href="#cb7-48"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb7-49"><a href="#cb7-49"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb7-50"><a href="#cb7-50"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb7-51"><a href="#cb7-51"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb7-52"><a href="#cb7-52"></a> }</span></code></pre></div>
<div id="plots" class="section level4">
<h4>Plots</h4>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1"></a><span class="co">#proportion of correct selection </span></span>
<span id="cb8-2"><a href="#cb8-2"></a></span>
<span id="cb8-3"><a href="#cb8-3"></a><span class="co">#beta=.5</span></span>
<span id="cb8-4"><a href="#cb8-4"></a>cs_n_.<span class="dv">5</span> <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">length</span>(n50[,<span class="dv">1</span>][n50[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]), </span>
<span id="cb8-5"><a href="#cb8-5"></a> <span class="kw">length</span>(n100[,<span class="dv">1</span>][n100[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]), </span>
<span id="cb8-6"><a href="#cb8-6"></a> <span class="kw">length</span>(n250[,<span class="dv">1</span>][n250[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb8-7"><a href="#cb8-7"></a> <span class="kw">length</span>(n500[,<span class="dv">1</span>][n500[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]))</span>
<span id="cb8-8"><a href="#cb8-8"></a></span>
<span id="cb8-9"><a href="#cb8-9"></a><span class="co">#beta=2</span></span>
<span id="cb8-10"><a href="#cb8-10"></a>cs_n_<span class="dv">2</span> <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">length</span>(n50[,<span class="dv">14</span>][n50[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]), </span>
<span id="cb8-11"><a href="#cb8-11"></a> <span class="kw">length</span>(n100[,<span class="dv">14</span>][n100[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]), </span>
<span id="cb8-12"><a href="#cb8-12"></a> <span class="kw">length</span>(n250[,<span class="dv">14</span>][n250[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb8-13"><a href="#cb8-13"></a> <span class="kw">length</span>(n500[,<span class="dv">14</span>][n500[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]))</span>
<span id="cb8-14"><a href="#cb8-14"></a></span>
<span id="cb8-15"><a href="#cb8-15"></a><span class="co">#plot</span></span>
<span id="cb8-16"><a href="#cb8-16"></a><span class="kw">plot</span>(<span class="kw">c</span>( <span class="dv">50</span>, <span class="dv">100</span>, <span class="dv">250</span>, <span class="dv">500</span>), cs_n_.<span class="dv">5</span><span class="op">/</span><span class="dv">100</span>, <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">ylim=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>), </span>
<span id="cb8-17"><a href="#cb8-17"></a> <span class="dt">ylab =</span> <span class="st">"Proportion of correct selection"</span>, <span class="dt">xlab =</span> <span class="st">"n"</span>)</span>
<span id="cb8-18"><a href="#cb8-18"></a><span class="kw">legend</span>(<span class="dv">400</span>, <span class="fl">0.5</span>, <span class="dt">legend=</span><span class="kw">c</span>(<span class="kw">expression</span>(<span class="kw">paste</span>(beta, <span class="st">"=.5"</span>)), <span class="kw">expression</span>(<span class="kw">paste</span>(beta, <span class="st">"=2"</span>))),</span>
<span id="cb8-19"><a href="#cb8-19"></a> <span class="dt">lty=</span><span class="dv">1</span><span class="op">:</span><span class="dv">2</span>, <span class="dt">cex=</span><span class="dv">1</span>)</span>
<span id="cb8-20"><a href="#cb8-20"></a><span class="kw">lines</span>(<span class="kw">c</span>( <span class="dv">50</span>, <span class="dv">100</span>, <span class="dv">250</span>, <span class="dv">500</span>), cs_n_<span class="dv">2</span><span class="op">/</span><span class="dv">100</span>, <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">lty=</span><span class="dv">2</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1"></a><span class="co">#posterior probability of the true model </span></span>
<span id="cb9-2"><a href="#cb9-2"></a></span>
<span id="cb9-3"><a href="#cb9-3"></a><span class="co">#beta=.5</span></span>
<span id="cb9-4"><a href="#cb9-4"></a>pp_n_.<span class="dv">5</span> <-<span class="kw">c</span>(<span class="kw">mean</span>(n50[,<span class="dv">2</span>]),</span>
<span id="cb9-5"><a href="#cb9-5"></a> <span class="kw">mean</span>(n100[,<span class="dv">2</span>]),</span>
<span id="cb9-6"><a href="#cb9-6"></a> <span class="kw">mean</span>(n250[,<span class="dv">2</span>]),</span>
<span id="cb9-7"><a href="#cb9-7"></a> <span class="kw">mean</span>(n500[,<span class="dv">2</span>])) <span class="co">#</span></span>
<span id="cb9-8"><a href="#cb9-8"></a><span class="co">#beta=2</span></span>
<span id="cb9-9"><a href="#cb9-9"></a>pp_n_<span class="dv">2</span> <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">mean</span>(n50[,<span class="dv">15</span>]),</span>
<span id="cb9-10"><a href="#cb9-10"></a> <span class="kw">mean</span>(n100[,<span class="dv">15</span>]),</span>
<span id="cb9-11"><a href="#cb9-11"></a> <span class="kw">mean</span>(n250[,<span class="dv">15</span>]),</span>
<span id="cb9-12"><a href="#cb9-12"></a> <span class="kw">mean</span>(n500[,<span class="dv">15</span>]))</span>
<span id="cb9-13"><a href="#cb9-13"></a></span>
<span id="cb9-14"><a href="#cb9-14"></a><span class="co">#plot</span></span>
<span id="cb9-15"><a href="#cb9-15"></a><span class="kw">plot</span>(<span class="kw">c</span>( <span class="dv">50</span>, <span class="dv">100</span>, <span class="dv">250</span>, <span class="dv">500</span>), pp_n_.<span class="dv">5</span>, <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">ylim=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>), </span>
<span id="cb9-16"><a href="#cb9-16"></a> <span class="dt">ylab =</span> <span class="st">"Posterior Probability of the true model"</span>, <span class="dt">xlab =</span> <span class="st">"n"</span>)</span>
<span id="cb9-17"><a href="#cb9-17"></a><span class="kw">legend</span>(<span class="dv">400</span>, <span class="fl">0.5</span>, <span class="dt">legend=</span><span class="kw">c</span>(<span class="kw">expression</span>(<span class="kw">paste</span>(beta, <span class="st">"=.5"</span>)), <span class="kw">expression</span>(<span class="kw">paste</span>(beta, <span class="st">"=2"</span>))),</span>
<span id="cb9-18"><a href="#cb9-18"></a> <span class="dt">lty=</span><span class="dv">1</span><span class="op">:</span><span class="dv">2</span>, <span class="dt">cex=</span><span class="dv">1</span>)</span>
<span id="cb9-19"><a href="#cb9-19"></a><span class="kw">lines</span>(<span class="kw">c</span>( <span class="dv">50</span>, <span class="dv">100</span>, <span class="dv">250</span>, <span class="dv">500</span>), pp_n_<span class="dv">2</span>, <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">lty=</span><span class="dv">2</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
</div>
</div>
<div id="effect-size-beta" class="section level3">
<h3>Effect Size <span class="math inline">\(\beta\)</span></h3>
<ul>
<li>The effect size varied from <span class="math inline">\(\beta = .1\)</span> to <span class="math inline">\(\beta = 3\)</span> given <span class="math inline">\(n=100\)</span> and <span class="math inline">\(n=250\)</span> for <span class="math inline">\(J=10\)</span>.</li>
</ul>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1"></a><span class="co">#beta=0.1</span></span>
<span id="cb10-2"><a href="#cb10-2"></a>xresults_beta_.<span class="dv">1</span> <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb10-3"><a href="#cb10-3"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb10-4"><a href="#cb10-4"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb10-5"><a href="#cb10-5"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb10-6"><a href="#cb10-6"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span>.<span class="dv">1</span>, <span class="dt">n=</span><span class="dv">100</span>)</span>
<span id="cb10-7"><a href="#cb10-7"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span>.<span class="dv">1</span>, <span class="dt">n=</span><span class="dv">250</span>)</span>
<span id="cb10-8"><a href="#cb10-8"></a> </span>
<span id="cb10-9"><a href="#cb10-9"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-10"><a href="#cb10-10"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb10-11"><a href="#cb10-11"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-12"><a href="#cb10-12"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb10-13"><a href="#cb10-13"></a> }</span>
<span id="cb10-14"><a href="#cb10-14"></a></span>
<span id="cb10-15"><a href="#cb10-15"></a></span>
<span id="cb10-16"><a href="#cb10-16"></a></span>
<span id="cb10-17"><a href="#cb10-17"></a><span class="co">#beta=0.5</span></span>
<span id="cb10-18"><a href="#cb10-18"></a>xresults_beta_.<span class="dv">5</span> <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb10-19"><a href="#cb10-19"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb10-20"><a href="#cb10-20"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb10-21"><a href="#cb10-21"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb10-22"><a href="#cb10-22"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span>.<span class="dv">5</span>, <span class="dt">n=</span><span class="dv">100</span>)</span>
<span id="cb10-23"><a href="#cb10-23"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span>.<span class="dv">5</span>, <span class="dt">n=</span><span class="dv">250</span>)</span>
<span id="cb10-24"><a href="#cb10-24"></a> </span>
<span id="cb10-25"><a href="#cb10-25"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-26"><a href="#cb10-26"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb10-27"><a href="#cb10-27"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-28"><a href="#cb10-28"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb10-29"><a href="#cb10-29"></a> }</span>
<span id="cb10-30"><a href="#cb10-30"></a></span>
<span id="cb10-31"><a href="#cb10-31"></a></span>
<span id="cb10-32"><a href="#cb10-32"></a></span>
<span id="cb10-33"><a href="#cb10-33"></a><span class="co">#beta=0.1</span></span>
<span id="cb10-34"><a href="#cb10-34"></a>xresults_beta_<span class="dv">1</span> <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb10-35"><a href="#cb10-35"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb10-36"><a href="#cb10-36"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb10-37"><a href="#cb10-37"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb10-38"><a href="#cb10-38"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="dv">1</span>, <span class="dt">n=</span><span class="dv">100</span>)</span>
<span id="cb10-39"><a href="#cb10-39"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="dv">1</span>, <span class="dt">n=</span><span class="dv">250</span>)</span>
<span id="cb10-40"><a href="#cb10-40"></a> </span>
<span id="cb10-41"><a href="#cb10-41"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-42"><a href="#cb10-42"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb10-43"><a href="#cb10-43"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-44"><a href="#cb10-44"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb10-45"><a href="#cb10-45"></a> }</span>
<span id="cb10-46"><a href="#cb10-46"></a></span>
<span id="cb10-47"><a href="#cb10-47"></a></span>
<span id="cb10-48"><a href="#cb10-48"></a></span>
<span id="cb10-49"><a href="#cb10-49"></a><span class="co">#beta=0.1</span></span>
<span id="cb10-50"><a href="#cb10-50"></a>xresults_beta_<span class="fl">1.5</span> <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb10-51"><a href="#cb10-51"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb10-52"><a href="#cb10-52"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb10-53"><a href="#cb10-53"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb10-54"><a href="#cb10-54"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="fl">1.5</span>, <span class="dt">n=</span><span class="dv">100</span>)</span>
<span id="cb10-55"><a href="#cb10-55"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="fl">1.5</span>, <span class="dt">n=</span><span class="dv">250</span>)</span>
<span id="cb10-56"><a href="#cb10-56"></a> </span>
<span id="cb10-57"><a href="#cb10-57"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-58"><a href="#cb10-58"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb10-59"><a href="#cb10-59"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-60"><a href="#cb10-60"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb10-61"><a href="#cb10-61"></a> }</span>
<span id="cb10-62"><a href="#cb10-62"></a></span>
<span id="cb10-63"><a href="#cb10-63"></a></span>
<span id="cb10-64"><a href="#cb10-64"></a></span>
<span id="cb10-65"><a href="#cb10-65"></a></span>
<span id="cb10-66"><a href="#cb10-66"></a><span class="co">#beta=0.1</span></span>
<span id="cb10-67"><a href="#cb10-67"></a>xresults_beta_<span class="dv">2</span> <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb10-68"><a href="#cb10-68"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb10-69"><a href="#cb10-69"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb10-70"><a href="#cb10-70"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb10-71"><a href="#cb10-71"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="dv">2</span>, <span class="dt">n=</span><span class="dv">100</span>)</span>
<span id="cb10-72"><a href="#cb10-72"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="dv">2</span>, <span class="dt">n=</span><span class="dv">250</span>)</span>
<span id="cb10-73"><a href="#cb10-73"></a> </span>
<span id="cb10-74"><a href="#cb10-74"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-75"><a href="#cb10-75"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb10-76"><a href="#cb10-76"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-77"><a href="#cb10-77"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb10-78"><a href="#cb10-78"></a> }</span>
<span id="cb10-79"><a href="#cb10-79"></a></span>
<span id="cb10-80"><a href="#cb10-80"></a></span>
<span id="cb10-81"><a href="#cb10-81"></a></span>
<span id="cb10-82"><a href="#cb10-82"></a>xresults_beta_<span class="fl">2.5</span> <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb10-83"><a href="#cb10-83"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb10-84"><a href="#cb10-84"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb10-85"><a href="#cb10-85"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb10-86"><a href="#cb10-86"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="fl">2.5</span>, <span class="dt">n=</span><span class="dv">100</span>)</span>
<span id="cb10-87"><a href="#cb10-87"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="fl">2.5</span>, <span class="dt">n=</span><span class="dv">250</span>)</span>
<span id="cb10-88"><a href="#cb10-88"></a> </span>
<span id="cb10-89"><a href="#cb10-89"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-90"><a href="#cb10-90"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb10-91"><a href="#cb10-91"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-92"><a href="#cb10-92"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb10-93"><a href="#cb10-93"></a> }</span>
<span id="cb10-94"><a href="#cb10-94"></a></span>
<span id="cb10-95"><a href="#cb10-95"></a></span>
<span id="cb10-96"><a href="#cb10-96"></a>xresults_beta_<span class="dv">3</span> <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(trials),</span>
<span id="cb10-97"><a href="#cb10-97"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb10-98"><a href="#cb10-98"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb10-99"><a href="#cb10-99"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb10-100"><a href="#cb10-100"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="dv">3</span>, <span class="dt">n=</span><span class="dv">100</span>)</span>
<span id="cb10-101"><a href="#cb10-101"></a> b =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">beta=</span><span class="dv">3</span>, <span class="dt">n=</span><span class="dv">250</span>)</span>
<span id="cb10-102"><a href="#cb10-102"></a> </span>
<span id="cb10-103"><a href="#cb10-103"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-104"><a href="#cb10-104"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>,</span>
<span id="cb10-105"><a href="#cb10-105"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,b<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb10-106"><a href="#cb10-106"></a> b<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb10-107"><a href="#cb10-107"></a> }</span></code></pre></div>
<div id="plots-1" class="section level4">
<h4>Plots</h4>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1"></a><span class="co">#proportion of correct selection</span></span>
<span id="cb11-2"><a href="#cb11-2"></a></span>
<span id="cb11-3"><a href="#cb11-3"></a><span class="co">#n=100</span></span>
<span id="cb11-4"><a href="#cb11-4"></a>cs_beta_<span class="dv">100</span> <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">length</span>(beta<span class="fl">.1</span>[,<span class="dv">1</span>][beta<span class="fl">.1</span>[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]), </span>
<span id="cb11-5"><a href="#cb11-5"></a> <span class="kw">length</span>(beta<span class="fl">.5</span>[,<span class="dv">1</span>][beta<span class="fl">.5</span>[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]), </span>
<span id="cb11-6"><a href="#cb11-6"></a> <span class="kw">length</span>(beta1[,<span class="dv">1</span>][beta1[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb11-7"><a href="#cb11-7"></a> <span class="kw">length</span>(beta1<span class="fl">.5</span>[,<span class="dv">1</span>][beta1<span class="fl">.5</span>[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb11-8"><a href="#cb11-8"></a> <span class="kw">length</span>(beta2[,<span class="dv">1</span>][beta2[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb11-9"><a href="#cb11-9"></a> <span class="kw">length</span>(beta2<span class="fl">.5</span>[,<span class="dv">1</span>][beta2<span class="fl">.5</span>[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]), </span>
<span id="cb11-10"><a href="#cb11-10"></a> <span class="kw">length</span>(beta3[,<span class="dv">1</span>][beta3[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]))</span>
<span id="cb11-11"><a href="#cb11-11"></a></span>
<span id="cb11-12"><a href="#cb11-12"></a><span class="co">#n=250</span></span>
<span id="cb11-13"><a href="#cb11-13"></a>cs_beta_<span class="dv">250</span> <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">length</span>(beta<span class="fl">.1</span>[,<span class="dv">14</span>][beta<span class="fl">.1</span>[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb11-14"><a href="#cb11-14"></a> <span class="kw">length</span>(beta<span class="fl">.5</span>[,<span class="dv">14</span>][beta<span class="fl">.5</span>[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb11-15"><a href="#cb11-15"></a> <span class="kw">length</span>(beta1[,<span class="dv">14</span>][beta1[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb11-16"><a href="#cb11-16"></a> <span class="kw">length</span>(beta1<span class="fl">.5</span>[,<span class="dv">14</span>][beta1<span class="fl">.5</span>[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb11-17"><a href="#cb11-17"></a> <span class="kw">length</span>(beta2[,<span class="dv">14</span>][beta2[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb11-18"><a href="#cb11-18"></a> <span class="kw">length</span>(beta2<span class="fl">.5</span>[,<span class="dv">14</span>][beta2<span class="fl">.5</span>[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]),</span>
<span id="cb11-19"><a href="#cb11-19"></a> <span class="kw">length</span>(beta3[,<span class="dv">14</span>][beta3[,<span class="dv">14</span>]<span class="op">==</span><span class="dv">1</span>]))</span>
<span id="cb11-20"><a href="#cb11-20"></a></span>
<span id="cb11-21"><a href="#cb11-21"></a></span>
<span id="cb11-22"><a href="#cb11-22"></a></span>
<span id="cb11-23"><a href="#cb11-23"></a><span class="co">#plot</span></span>
<span id="cb11-24"><a href="#cb11-24"></a><span class="kw">plot</span>(<span class="kw">c</span>( <span class="fl">.1</span>,.<span class="dv">5</span>,<span class="dv">1</span>, <span class="fl">1.5</span>, <span class="dv">2</span>, <span class="fl">2.5</span>, <span class="dv">3</span>), cs_beta_<span class="dv">100</span><span class="op">/</span><span class="dv">100</span>, <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">ylim=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>), </span>
<span id="cb11-25"><a href="#cb11-25"></a> <span class="dt">ylab =</span> <span class="st">"Proportion of correct selection"</span>, <span class="dt">xlab =</span> <span class="kw">expression</span>(beta))</span>
<span id="cb11-26"><a href="#cb11-26"></a><span class="kw">legend</span>(<span class="dv">2</span>, <span class="fl">0.3</span>, <span class="dt">legend=</span><span class="kw">c</span>(<span class="st">"n=100"</span>, <span class="st">"n=250"</span>),</span>
<span id="cb11-27"><a href="#cb11-27"></a> <span class="dt">lty=</span><span class="dv">1</span><span class="op">:</span><span class="dv">2</span>, <span class="dt">cex=</span><span class="dv">1</span>)</span>
<span id="cb11-28"><a href="#cb11-28"></a><span class="kw">lines</span>(<span class="kw">c</span>( <span class="fl">.1</span>,.<span class="dv">5</span>,<span class="dv">1</span>, <span class="fl">1.5</span>, <span class="dv">2</span>, <span class="fl">2.5</span>, <span class="dv">3</span>), cs_beta_<span class="dv">250</span><span class="op">/</span><span class="dv">100</span>, <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">lty=</span><span class="dv">2</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1"></a><span class="co">#posterior probability of the true model </span></span>
<span id="cb12-2"><a href="#cb12-2"></a></span>
<span id="cb12-3"><a href="#cb12-3"></a><span class="co">#n=100</span></span>
<span id="cb12-4"><a href="#cb12-4"></a>pp_beta_<span class="dv">100</span> <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">mean</span>(beta<span class="fl">.1</span>[,<span class="dv">2</span>]),</span>
<span id="cb12-5"><a href="#cb12-5"></a> <span class="kw">mean</span>(beta<span class="fl">.5</span>[,<span class="dv">2</span>]), </span>
<span id="cb12-6"><a href="#cb12-6"></a> <span class="kw">mean</span>(beta1[,<span class="dv">2</span>]), </span>
<span id="cb12-7"><a href="#cb12-7"></a> <span class="kw">mean</span>(beta1<span class="fl">.5</span>[,<span class="dv">2</span>]),</span>
<span id="cb12-8"><a href="#cb12-8"></a> <span class="kw">mean</span>(beta2[,<span class="dv">2</span>]),</span>
<span id="cb12-9"><a href="#cb12-9"></a> <span class="kw">mean</span>(beta2<span class="fl">.5</span>[,<span class="dv">2</span>]), </span>
<span id="cb12-10"><a href="#cb12-10"></a> <span class="kw">mean</span>(beta3[,<span class="dv">2</span>]))</span>
<span id="cb12-11"><a href="#cb12-11"></a></span>
<span id="cb12-12"><a href="#cb12-12"></a><span class="co">#n=250</span></span>
<span id="cb12-13"><a href="#cb12-13"></a>pp_beta_<span class="dv">250</span> <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">mean</span>(beta<span class="fl">.1</span>[,<span class="dv">15</span>]),</span>
<span id="cb12-14"><a href="#cb12-14"></a> <span class="kw">mean</span>(beta<span class="fl">.5</span>[,<span class="dv">15</span>]),</span>
<span id="cb12-15"><a href="#cb12-15"></a> <span class="kw">mean</span>(beta1[,<span class="dv">15</span>]),</span>
<span id="cb12-16"><a href="#cb12-16"></a> <span class="kw">mean</span>(beta1<span class="fl">.5</span>[,<span class="dv">15</span>]),</span>
<span id="cb12-17"><a href="#cb12-17"></a> <span class="kw">mean</span>(beta2[,<span class="dv">15</span>]),</span>
<span id="cb12-18"><a href="#cb12-18"></a> <span class="kw">mean</span>(beta2<span class="fl">.5</span>[,<span class="dv">15</span>]),</span>
<span id="cb12-19"><a href="#cb12-19"></a> <span class="kw">mean</span>(beta3[,<span class="dv">15</span>]))</span>
<span id="cb12-20"><a href="#cb12-20"></a></span>
<span id="cb12-21"><a href="#cb12-21"></a><span class="co">#plot</span></span>
<span id="cb12-22"><a href="#cb12-22"></a><span class="kw">plot</span>(<span class="kw">c</span>( <span class="fl">.1</span>,.<span class="dv">5</span>,<span class="dv">1</span>, <span class="fl">1.5</span>, <span class="dv">2</span>, <span class="fl">2.5</span>, <span class="dv">3</span>), pp_beta_<span class="dv">100</span>, <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">ylim=</span><span class="kw">c</span>(<span class="dv">0</span>, <span class="dv">1</span>), </span>
<span id="cb12-23"><a href="#cb12-23"></a> <span class="dt">ylab =</span> <span class="st">"Posterior Probability of the true model"</span>, <span class="dt">xlab =</span> <span class="kw">expression</span>(beta))</span>
<span id="cb12-24"><a href="#cb12-24"></a><span class="kw">legend</span>(<span class="dv">2</span>, <span class="fl">0.3</span>, <span class="dt">legend=</span><span class="kw">c</span>(<span class="st">"n=100"</span>, <span class="st">"n=250"</span>),</span>
<span id="cb12-25"><a href="#cb12-25"></a> <span class="dt">lty=</span><span class="dv">1</span><span class="op">:</span><span class="dv">2</span>, <span class="dt">cex=</span><span class="dv">1</span>)</span>
<span id="cb12-26"><a href="#cb12-26"></a><span class="kw">lines</span>(<span class="kw">c</span>( <span class="fl">.1</span>,.<span class="dv">5</span>,<span class="dv">1</span>, <span class="fl">1.5</span>, <span class="dv">2</span>, <span class="fl">2.5</span>, <span class="dv">3</span>), pp_beta_<span class="dv">250</span>, <span class="dt">type=</span><span class="st">"l"</span>, <span class="dt">lty=</span><span class="dv">2</span>)</span></code></pre></div>
<p><img src="" /><!-- --></p>
</div>
</div>
<div id="number-of-variables-j" class="section level3">
<h3>Number of variables (J)</h3>
<ul>
<li><span class="math inline">\(J\)</span> varied from <span class="math inline">\(J=6\)</span> to <span class="math inline">\(J=30\)</span> given <code>k=4</code>.</li>
</ul>
<p><br />
</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1"></a>start <-<span class="st"> </span><span class="kw">proc.time</span>()</span>
<span id="cb13-2"><a href="#cb13-2"></a>mj6 <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(<span class="dv">100</span>),</span>
<span id="cb13-3"><a href="#cb13-3"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb13-4"><a href="#cb13-4"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb13-5"><a href="#cb13-5"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb13-6"><a href="#cb13-6"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">n_var=</span><span class="dv">6</span>)</span>
<span id="cb13-7"><a href="#cb13-7"></a> </span>
<span id="cb13-8"><a href="#cb13-8"></a> </span>
<span id="cb13-9"><a href="#cb13-9"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb13-10"><a href="#cb13-10"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb13-11"><a href="#cb13-11"></a> }</span>
<span id="cb13-12"><a href="#cb13-12"></a></span>
<span id="cb13-13"><a href="#cb13-13"></a>mj6_CPU <-<span class="st"> </span><span class="kw">proc.time</span>()<span class="op">-</span>start</span>
<span id="cb13-14"><a href="#cb13-14"></a></span>
<span id="cb13-15"><a href="#cb13-15"></a><span class="co">######################################################################################################</span></span>
<span id="cb13-16"><a href="#cb13-16"></a></span>
<span id="cb13-17"><a href="#cb13-17"></a>start <-<span class="st"> </span><span class="kw">proc.time</span>()</span>
<span id="cb13-18"><a href="#cb13-18"></a>mj10 <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(<span class="dv">100</span>),</span>
<span id="cb13-19"><a href="#cb13-19"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb13-20"><a href="#cb13-20"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb13-21"><a href="#cb13-21"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb13-22"><a href="#cb13-22"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">n_var=</span><span class="dv">10</span>)</span>
<span id="cb13-23"><a href="#cb13-23"></a> </span>
<span id="cb13-24"><a href="#cb13-24"></a> </span>
<span id="cb13-25"><a href="#cb13-25"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb13-26"><a href="#cb13-26"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb13-27"><a href="#cb13-27"></a> }</span>
<span id="cb13-28"><a href="#cb13-28"></a></span>
<span id="cb13-29"><a href="#cb13-29"></a>mj10_CPU <-<span class="st"> </span><span class="kw">proc.time</span>()<span class="op">-</span>start</span>
<span id="cb13-30"><a href="#cb13-30"></a></span>
<span id="cb13-31"><a href="#cb13-31"></a></span>
<span id="cb13-32"><a href="#cb13-32"></a><span class="co">######################################################################################################</span></span>
<span id="cb13-33"><a href="#cb13-33"></a>start <-<span class="st"> </span><span class="kw">proc.time</span>()</span>
<span id="cb13-34"><a href="#cb13-34"></a>mj20 <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(<span class="dv">100</span>),</span>
<span id="cb13-35"><a href="#cb13-35"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb13-36"><a href="#cb13-36"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb13-37"><a href="#cb13-37"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb13-38"><a href="#cb13-38"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">n_var=</span><span class="dv">20</span>)</span>
<span id="cb13-39"><a href="#cb13-39"></a> </span>
<span id="cb13-40"><a href="#cb13-40"></a> </span>
<span id="cb13-41"><a href="#cb13-41"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb13-42"><a href="#cb13-42"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb13-43"><a href="#cb13-43"></a> }</span>
<span id="cb13-44"><a href="#cb13-44"></a></span>
<span id="cb13-45"><a href="#cb13-45"></a>mj20_CPU <-<span class="st"> </span><span class="kw">proc.time</span>()<span class="op">-</span>start</span>
<span id="cb13-46"><a href="#cb13-46"></a></span>
<span id="cb13-47"><a href="#cb13-47"></a><span class="co">######################################################################################################</span></span>
<span id="cb13-48"><a href="#cb13-48"></a></span>
<span id="cb13-49"><a href="#cb13-49"></a>start <-<span class="st"> </span><span class="kw">proc.time</span>()</span>
<span id="cb13-50"><a href="#cb13-50"></a>mj15 <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(<span class="dv">100</span>),</span>
<span id="cb13-51"><a href="#cb13-51"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb13-52"><a href="#cb13-52"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb13-53"><a href="#cb13-53"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb13-54"><a href="#cb13-54"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">n_var=</span><span class="dv">15</span>)</span>
<span id="cb13-55"><a href="#cb13-55"></a> </span>
<span id="cb13-56"><a href="#cb13-56"></a> </span>
<span id="cb13-57"><a href="#cb13-57"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb13-58"><a href="#cb13-58"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb13-59"><a href="#cb13-59"></a> }</span>
<span id="cb13-60"><a href="#cb13-60"></a></span>
<span id="cb13-61"><a href="#cb13-61"></a>mj15_CPU <-<span class="st"> </span><span class="kw">proc.time</span>()<span class="op">-</span>start</span>
<span id="cb13-62"><a href="#cb13-62"></a></span>
<span id="cb13-63"><a href="#cb13-63"></a><span class="co">######################################################################################################</span></span>
<span id="cb13-64"><a href="#cb13-64"></a></span>
<span id="cb13-65"><a href="#cb13-65"></a>start <-<span class="st"> </span><span class="kw">proc.time</span>()</span>
<span id="cb13-66"><a href="#cb13-66"></a>mj30 <-<span class="st"> </span><span class="kw">foreach</span>(<span class="kw">icount</span>(<span class="dv">100</span>),</span>
<span id="cb13-67"><a href="#cb13-67"></a> <span class="dt">.packages =</span> <span class="kw">c</span>(<span class="st">"mgcv"</span>, <span class="st">"data.table"</span>, <span class="st">"MCMCprecision"</span>, <span class="st">"lubridate"</span>, <span class="st">"progress"</span>),</span>
<span id="cb13-68"><a href="#cb13-68"></a> <span class="dt">.combine =</span> rbind) <span class="op">%dopar%</span>{</span>
<span id="cb13-69"><a href="#cb13-69"></a> <span class="co"># set the specific values of the parameters </span></span>
<span id="cb13-70"><a href="#cb13-70"></a> a =<span class="st"> </span><span class="kw">bayesian_selection</span>(<span class="dt">n_var=</span><span class="dv">30</span>)</span>
<span id="cb13-71"><a href="#cb13-71"></a> </span>
<span id="cb13-72"><a href="#cb13-72"></a> </span>
<span id="cb13-73"><a href="#cb13-73"></a> <span class="kw">c</span>(a<span class="op">$</span><span class="st">`</span><span class="dt">is true</span><span class="st">`</span>, a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_true</span><span class="st">`</span>,a<span class="op">$</span><span class="st">`</span><span class="dt">posterior probability_selected</span><span class="st">`</span>,</span>
<span id="cb13-74"><a href="#cb13-74"></a> a<span class="op">$</span><span class="st">`</span><span class="dt">selected model</span><span class="st">`</span>)</span>
<span id="cb13-75"><a href="#cb13-75"></a> }</span>
<span id="cb13-76"><a href="#cb13-76"></a></span>
<span id="cb13-77"><a href="#cb13-77"></a>mj30_CPU <-<span class="st"> </span><span class="kw">proc.time</span>()<span class="op">-</span>start</span></code></pre></div>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1"></a><span class="co">#proportion of correct selection & posterior probability of the true model</span></span>
<span id="cb14-2"><a href="#cb14-2"></a>J <-<span class="st"> </span><span class="kw">cbind</span>(<span class="kw">c</span>(<span class="kw">length</span>(mj6[,<span class="dv">1</span>][mj6[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]), <span class="kw">length</span>(mj10[,<span class="dv">1</span>][mj10[,<span class="dv">1</span>]<span class="op">==</span><span class="dv">1</span>]),</span>