-
Notifications
You must be signed in to change notification settings - Fork 0
/
one_one_es.m
75 lines (65 loc) · 2.59 KB
/
one_one_es.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
function [ fitnessDifference, parameters ] = one_one_es( ...
alg1, alg2, numberLandscapeTrials, numberAlgorithmTrials, type, reqFitDiff)
%--------------------------------------------------------------------------
%A (1+1)-ES that finds a landscape parameterisation for a specified fitness
%difference.
%
%Syntax: [ fitnessDifference, parameters ] = active_search_local_ridge(
% alg1, alg2, numberLandscapeTrials, numberAlgorithmTrials )
%
%Example: active_search_local_ridge(@wrapper_direct,@wrapper_emna,30,30)
%
%Inputs:
% Algorithm 1 handler
% Algorithm 2 handler
% Number of landscape instances
% Number of trials for each landscape instance
%
%Outputs:
% Fitness difference between Algorithm 1 and 2
% Landscape parameterisation found
%
% Copyright (C) 2014 Rachael Morgan ([email protected])
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%--------------------------------------------------------------------------
% Initialise variables
run init;
% Landscape parameters, initialised randomly
parameters = struct(...
'nGaussian', ceil(rand()*9), ...
'varianceRange', rand()*0.25, 'typeParameters', struct());
if(strcmp(type,'ridge'))
parameters.typeParameters = struct( 'ridgeRotation', rand()*90, ...
'gaussianRotation', rand()*90);
elseif(strcmp(type,'valley'))
parameters.typeParameters = struct( 'valleyVariance', rand()*0.1);
end
offspringParameters = parameters;
fitnessDifference = 0; % Current fitness difference
% 1 + 1 ES
while fitnessDifference < reqFitDiff
% Perform experiment to determine the fitness difference
offspringFitnessDifference = experiment(alg1, alg2, ...
numberLandscapeTrials, numberAlgorithmTrials, ...
type, offspringParameters);
if (offspringFitnessDifference > fitnessDifference)
% Accept point if better
fitnessDifference = offspringFitnessDifference;
parameters = offspringParameters;
end
% Mutation
offspringParameters = mutate(parameters, type);
end
end