forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seq2seq_attn.py
283 lines (243 loc) · 10.4 KB
/
seq2seq_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.nn.initializer as I
class CrossEntropyCriterion(nn.Layer):
def __init__(self):
super(CrossEntropyCriterion, self).__init__()
def forward(self, predict, label, trg_mask):
cost = F.cross_entropy(
input=predict, label=label, soft_label=False, reduction='none')
cost = paddle.squeeze(cost, axis=[2])
masked_cost = cost * trg_mask
batch_mean_cost = paddle.mean(masked_cost, axis=[0])
seq_cost = paddle.sum(batch_mean_cost)
return seq_cost
class Seq2SeqEncoder(nn.Layer):
def __init__(self,
vocab_size,
embed_dim,
hidden_size,
num_layers,
dropout_prob=0.,
init_scale=0.1):
super(Seq2SeqEncoder, self).__init__()
self.embedder = nn.Embedding(
vocab_size,
embed_dim,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.lstm = nn.LSTM(
input_size=embed_dim,
hidden_size=hidden_size,
num_layers=num_layers,
direction="forward",
dropout=dropout_prob if num_layers > 1 else 0.)
def forward(self, sequence, sequence_length):
inputs = self.embedder(sequence)
encoder_output, encoder_state = self.lstm(
inputs, sequence_length=sequence_length)
return encoder_output, encoder_state
class AttentionLayer(nn.Layer):
def __init__(self, hidden_size, bias=False, init_scale=0.1):
super(AttentionLayer, self).__init__()
self.input_proj = nn.Linear(
hidden_size,
hidden_size,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)),
bias_attr=bias)
self.output_proj = nn.Linear(
hidden_size + hidden_size,
hidden_size,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)),
bias_attr=bias)
def forward(self, hidden, encoder_output, encoder_padding_mask):
encoder_output = self.input_proj(encoder_output)
attn_scores = paddle.matmul(
paddle.unsqueeze(hidden, [1]), encoder_output, transpose_y=True)
if encoder_padding_mask is not None:
attn_scores = paddle.add(attn_scores, encoder_padding_mask)
attn_scores = F.softmax(attn_scores)
attn_out = paddle.squeeze(
paddle.matmul(attn_scores, encoder_output), [1])
attn_out = paddle.concat([attn_out, hidden], 1)
attn_out = self.output_proj(attn_out)
return attn_out
class Seq2SeqDecoderCell(nn.RNNCellBase):
def __init__(self, num_layers, input_size, hidden_size, dropout_prob=0.):
super(Seq2SeqDecoderCell, self).__init__()
if dropout_prob > 0.0:
self.dropout = nn.Dropout(dropout_prob)
else:
self.dropout = None
self.lstm_cells = nn.LayerList([
nn.LSTMCell(
input_size=input_size + hidden_size if i == 0 else hidden_size,
hidden_size=hidden_size) for i in range(num_layers)
])
self.attention_layer = AttentionLayer(hidden_size)
def forward(self,
step_input,
states,
encoder_output,
encoder_padding_mask=None):
lstm_states, input_feed = states
new_lstm_states = []
step_input = paddle.concat([step_input, input_feed], 1)
for i, lstm_cell in enumerate(self.lstm_cells):
out, new_lstm_state = lstm_cell(step_input, lstm_states[i])
if self.dropout:
step_input = self.dropout(out)
else:
step_input = out
new_lstm_states.append(new_lstm_state)
out = self.attention_layer(step_input, encoder_output,
encoder_padding_mask)
return out, [new_lstm_states, out]
class Seq2SeqDecoder(nn.Layer):
def __init__(self,
vocab_size,
embed_dim,
hidden_size,
num_layers,
dropout_prob=0.,
init_scale=0.1):
super(Seq2SeqDecoder, self).__init__()
self.embedder = nn.Embedding(
vocab_size,
embed_dim,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)))
self.lstm_attention = nn.RNN(Seq2SeqDecoderCell(
num_layers, embed_dim, hidden_size, dropout_prob),
is_reverse=False,
time_major=False)
self.output_layer = nn.Linear(
hidden_size,
vocab_size,
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
low=-init_scale, high=init_scale)),
bias_attr=False)
def forward(self, trg, decoder_initial_states, encoder_output,
encoder_padding_mask):
inputs = self.embedder(trg)
decoder_output, _ = self.lstm_attention(
inputs,
initial_states=decoder_initial_states,
encoder_output=encoder_output,
encoder_padding_mask=encoder_padding_mask)
predict = self.output_layer(decoder_output)
return predict
class Seq2SeqAttnModel(nn.Layer):
def __init__(self,
src_vocab_size,
trg_vocab_size,
embed_dim,
hidden_size,
num_layers,
dropout_prob=0.,
eos_id=1,
init_scale=0.1):
super(Seq2SeqAttnModel, self).__init__()
self.hidden_size = hidden_size
self.eos_id = eos_id
self.num_layers = num_layers
self.INF = 1e9
self.encoder = Seq2SeqEncoder(src_vocab_size, embed_dim, hidden_size,
num_layers, dropout_prob, init_scale)
self.decoder = Seq2SeqDecoder(trg_vocab_size, embed_dim, hidden_size,
num_layers, dropout_prob, init_scale)
def forward(self, src, src_length, trg):
encoder_output, encoder_final_state = self.encoder(src, src_length)
# Transfer shape of encoder_final_states to [num_layers, 2, batch_size, hidden_size]
encoder_final_states = [
(encoder_final_state[0][i], encoder_final_state[1][i])
for i in range(self.num_layers)
]
# Construct decoder initial states: use input_feed and the shape is
# [[h,c] * num_layers, input_feed], consistent with Seq2SeqDecoderCell.states
decoder_initial_states = [
encoder_final_states,
self.decoder.lstm_attention.cell.get_initial_states(
batch_ref=encoder_output, shape=[self.hidden_size])
]
# Build attention mask to avoid paying attention on padddings
src_mask = (src != self.eos_id).astype(paddle.get_default_dtype())
encoder_padding_mask = (src_mask - 1.0) * self.INF
encoder_padding_mask = paddle.unsqueeze(encoder_padding_mask, [1])
predict = self.decoder(trg, decoder_initial_states, encoder_output,
encoder_padding_mask)
return predict
class Seq2SeqAttnInferModel(Seq2SeqAttnModel):
def __init__(self,
src_vocab_size,
trg_vocab_size,
embed_dim,
hidden_size,
num_layers,
dropout_prob=0.,
bos_id=0,
eos_id=1,
beam_size=4,
max_out_len=256):
args = dict(locals())
args.pop("self")
args.pop("__class__", None)
self.bos_id = args.pop("bos_id")
self.beam_size = args.pop("beam_size")
self.max_out_len = args.pop("max_out_len")
self.num_layers = num_layers
super(Seq2SeqAttnInferModel, self).__init__(**args)
# Dynamic decoder for inference
self.beam_search_decoder = nn.BeamSearchDecoder(
self.decoder.lstm_attention.cell,
start_token=bos_id,
end_token=eos_id,
beam_size=beam_size,
embedding_fn=self.decoder.embedder,
output_fn=self.decoder.output_layer)
def forward(self, src, src_length):
encoder_output, encoder_final_state = self.encoder(src, src_length)
encoder_final_state = [
(encoder_final_state[0][i], encoder_final_state[1][i])
for i in range(self.num_layers)
]
# Initial decoder initial states
decoder_initial_states = [
encoder_final_state,
self.decoder.lstm_attention.cell.get_initial_states(
batch_ref=encoder_output, shape=[self.hidden_size])
]
# Build attention mask to avoid paying attention on paddings
src_mask = (src != self.eos_id).astype(paddle.get_default_dtype())
encoder_padding_mask = (src_mask - 1.0) * self.INF
encoder_padding_mask = paddle.unsqueeze(encoder_padding_mask, [1])
# Tile the batch dimension with beam_size
encoder_output = nn.BeamSearchDecoder.tile_beam_merge_with_batch(
encoder_output, self.beam_size)
encoder_padding_mask = nn.BeamSearchDecoder.tile_beam_merge_with_batch(
encoder_padding_mask, self.beam_size)
# Dynamic decoding with beam search
seq_output, _ = nn.dynamic_decode(
decoder=self.beam_search_decoder,
inits=decoder_initial_states,
max_step_num=self.max_out_len,
encoder_output=encoder_output,
encoder_padding_mask=encoder_padding_mask)
return seq_output