From fd148db20f0b80fbb039f2f3a2ec66da76598905 Mon Sep 17 00:00:00 2001 From: Dmitry Ryumin Date: Mon, 25 Mar 2024 04:16:35 +0300 Subject: [PATCH] Update files --- json_data/2024/main/ASPS.json | 168 ++++++++++++++++++++++++++++++++ json_data/2024/main/SPCOM.json | 170 +++++++++++++++++++++++++++++++++ 2 files changed, 338 insertions(+) create mode 100644 json_data/2024/main/SPCOM.json diff --git a/json_data/2024/main/ASPS.json b/json_data/2024/main/ASPS.json index de510cf..2cfe098 100644 --- a/json_data/2024/main/ASPS.json +++ b/json_data/2024/main/ASPS.json @@ -166,5 +166,173 @@ "onedrive": null, "loom": null, "section": "ASPS Lecture" + }, + { + "title": "Dicetrack: Lightweight Dice Classification on Resource-Constrained Platforms with Optimized Deep Learning Models", + "base_url": null, + "title_page": null, + "ieee_id": "10447958", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": null, + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "ASPS Lecture" + }, + { + "title": "Enhanced Deep Reinforcement Learning for Parcel Singulation in Non-Stationary Environments", + "base_url": null, + "title_page": null, + "ieee_id": "10446437", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": null, + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "ASPS Lecture" + }, + { + "title": "A Learning-based System for Automatic Intentional Non-Adherence Detection from Dosing Videos", + "base_url": null, + "title_page": null, + "ieee_id": "10446339", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": null, + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "ASPS Lecture" + }, + { + "title": "Optimizing Trading Strategies in Quantitative Markets using Multi-Agent Reinforcement Learning", + "base_url": null, + "title_page": null, + "ieee_id": "10446489", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": "2303.11959", + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "ASPS Lecture" + }, + { + "title": "Deep Learning AMR Model Inference Acceleration with CFU for Edge Systems", + "base_url": null, + "title_page": null, + "ieee_id": "10447201", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": null, + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "ASPS Lecture" + }, + { + "title": "MMCOUNT: Stationary Crowd Counting System based on Commodity Millimeter-Wave Radar", + "base_url": null, + "title_page": null, + "ieee_id": "10447408", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": null, + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "ASPS Lecture" } ] \ No newline at end of file diff --git a/json_data/2024/main/SPCOM.json b/json_data/2024/main/SPCOM.json new file mode 100644 index 0000000..9975c45 --- /dev/null +++ b/json_data/2024/main/SPCOM.json @@ -0,0 +1,170 @@ +[ + { + "title": "A Smoothed Bregman Proximal Gradient Algorithm for Decentralized Nonconvex Optimization", + "base_url": null, + "title_page": null, + "ieee_id": "10448285", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": null, + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "Distributed and Federated Learning" + }, + { + "title": "Asynchronous Diffusion Learning with Agent Subsampling and Local Updates", + "base_url": null, + "title_page": null, + "ieee_id": "10447684", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": "2402.05529", + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "Distributed and Federated Learning" + }, + { + "title": "Composite Federated Learning with Heterogeneous Data", + "base_url": null, + "title_page": null, + "ieee_id": "10447718", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": "2309.01795", + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "Distributed and Federated Learning" + }, + { + "title": "Mitigating Data Injection Attacks on Federated Learning", + "base_url": null, + "title_page": null, + "ieee_id": "10446615", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": "2312.02102", + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "Distributed and Federated Learning" + }, + { + "title": "Multi-Model Wireless Federated Learning with Downlink Beamforming", + "base_url": null, + "title_page": null, + "ieee_id": "10445815", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": "2312.13424", + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "Distributed and Federated Learning" + }, + { + "title": "Client-Free Federated Unlearning via Training Reconstruction with Anchor Subspace Calibration", + "base_url": null, + "title_page": null, + "ieee_id": "10447085", + "github": null, + "web_page": null, + "github_page": null, + "colab": null, + "modelscope": null, + "gitee": null, + "gitlab": null, + "zenodo": null, + "kaggle": null, + "demo_page": null, + "paper_thecvf": null, + "paper_arxiv_id": null, + "paper_pdf": null, + "paper_hal_science": null, + "paper_researchgate": null, + "paper_amazon": null, + "youtube_id": null, + "drive_google": null, + "dropbox": null, + "onedrive": null, + "loom": null, + "section": "Distributed and Federated Learning" + } +] \ No newline at end of file